The category of lattices #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This defines Lat
, the category of lattices.
Note that Lat
doesn't correspond to the literature definition of [Lat
]
(https://ncatlab.org/nlab/show/Lat) as we don't require bottom or top elements. Instead, Lat
corresponds to BddLat
.
TODO #
The free functor from Lat
to BddLat
is X → with_top (with_bot X)
.
The category of lattices.
Equations
@[protected, instance]
@[protected, instance]
Equations
@[protected, instance]
Equations
- Lat.lattice_hom.category_theory.bundled_hom = {to_fun := λ (_x _x_1 : Type u_1) (_x_2 : lattice _x) (_x_3 : lattice _x_1), coe_fn, id := lattice_hom.id, comp := lattice_hom.comp, hom_ext := Lat.lattice_hom.category_theory.bundled_hom._proof_1, id_to_fun := Lat.lattice_hom.category_theory.bundled_hom._proof_2, comp_to_fun := Lat.lattice_hom.category_theory.bundled_hom._proof_3}
@[protected, instance]
@[protected, instance]
@[protected, instance]
Equations
- Lat.has_forget_to_PartOrd = {forget₂ := {obj := λ (X : Lat), {α := ↥X, str := semilattice_inf.to_partial_order ↥X (lattice.to_semilattice_inf ↥X)}, map := λ (X Y : Lat) (f : X ⟶ Y), ↑f, map_id' := Lat.has_forget_to_PartOrd._proof_1, map_comp' := Lat.has_forget_to_PartOrd._proof_2}, forget_comp := Lat.has_forget_to_PartOrd._proof_3}
Constructs an isomorphism of lattices from an order isomorphism between them.
Equations
- Lat.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
The equivalence between Lat
and itself induced by order_dual
both ways.
Equations
- Lat.dual_equiv = category_theory.equivalence.mk Lat.dual Lat.dual (category_theory.nat_iso.of_components (λ (X : Lat), Lat.iso.mk (order_iso.dual_dual ↥X)) Lat.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : Lat), Lat.iso.mk (order_iso.dual_dual ↥X)) Lat.dual_equiv._proof_2)