Cartan subalgebras #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Cartan subalgebras are one of the most important concepts in Lie theory. We define them here. The standard example is the set of diagonal matrices in the Lie algebra of matrices.
Main definitions #
lie_submodule.is_ucs_limit
lie_subalgebra.is_cartan_subalgebra
lie_subalgebra.is_cartan_subalgebra_iff_is_ucs_limit
Tags #
lie subalgebra, normalizer, idealizer, cartan subalgebra
Given a Lie module M
of a Lie algebra L
, lie_submodule.is_ucs_limit
is the proposition
that a Lie submodule N ⊆ M
is the limiting value for the upper central series.
This is a characteristic property of Cartan subalgebras with the roles of L
, M
, N
played by
H
, L
, H
, respectively. See lie_subalgebra.is_cartan_subalgebra_iff_is_ucs_limit
.
- nilpotent : lie_algebra.is_nilpotent R ↥H
- self_normalizing : H.normalizer = H
A Cartan subalgebra is a nilpotent, self-normalizing subalgebra.
Instances of this typeclass
A nilpotent Lie algebra is its own Cartan subalgebra.