Zeroth left derived functors #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
If F : C ⥤ D
is an additive right exact functor between abelian categories, where C
has enough
projectives, we provide the natural isomorphism F.left_derived 0 ≅ F
.
Main definitions #
category_theory.abelian.functor.left_derived_zero_iso_self
: the natural isomorphism(F.left_derived 0) ≅ F
.
Main results #
preserves_exact_of_preserves_finite_colimits_of_epi
: ifpreserves_finite_colimits F
andepi g
, thenexact (F.map f) (F.map g)
ifexact f g
.
If preserves_finite_colimits F
and epi g
, then exact (F.map f) (F.map g)
if
exact f g
.
Given P : ProjectiveResolution X
, a morphism (F.left_derived 0).obj X ⟶ F.obj X
.
Equations
- category_theory.abelian.functor.left_derived_zero_to_self_app F P = (F.left_derived_obj_iso 0 P).hom ≫ homology.desc' (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_to 0) (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_from 0) _ (category_theory.limits.kernel.ι (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_from 0) ≫ F.map (P.π.f 0)) _
Given P : ProjectiveResolution X
, a morphism F.obj X ⟶ (F.left_derived 0).obj X
given
preserves_finite_colimits F
.
Equations
- category_theory.abelian.functor.left_derived_zero_to_self_app_inv F P = (category_theory.as_iso (category_theory.limits.cokernel.desc (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_to 0) (F.map (P.π.f 0)) _)).inv ≫ category_theory.limits.cokernel.map (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_to 0) (category_theory.limits.kernel.lift (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_from 0) (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_to 0) _) (𝟙 (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).X_prev 0)) (category_theory.limits.kernel.lift (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_from 0) (𝟙 (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).X 0)) _) _ ≫ (homology_iso_cokernel_lift (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_to 0) (((F.map_homological_complex (complex_shape.down ℕ)).obj P.complex).d_from 0) _).inv ≫ (F.left_derived_obj_iso 0 P).inv
Given P : ProjectiveResolution X
, the isomorphism (F.left_derived 0).obj X ≅ F.obj X
if
preserves_finite_colimits F
.
Given P : ProjectiveResolution X
and Q : ProjectiveResolution Y
and a morphism f : X ⟶ Y
,
naturality of the square given by `left_derived_zero_to_self_obj_hom.
Given preserves_finite_colimits F
, the natural isomorphism (F.left_derived 0) ≅ F
.