The kernel of a linear function is closed or dense #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we prove (linear_map.is_closed_or_dense_ker
) that the kernel of a linear function f : M →ₗ[R] N
is either closed or dense in M
provided that N
is a simple module over R
. This
applies, e.g., to the case when R = N
is a division ring.
theorem
linear_map.is_closed_or_dense_ker
{R : Type u}
{M : Type v}
{N : Type w}
[ring R]
[topological_space R]
[topological_space M]
[add_comm_group M]
[add_comm_group N]
[module R M]
[has_continuous_smul R M]
[module R N]
[has_continuous_add M]
[is_simple_module R N]
(l : M →ₗ[R] N) :
is_closed ↑(linear_map.ker l) ∨ dense ↑(linear_map.ker l)
The kernel of a linear map taking values in a simple module over the base ring is closed or
dense. Applies, e.g., to the case when R = N
is a division ring.