Polynomial module #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file, we define the polynomial module for an R-module M, i.e. the R[X]-module M[X].
This is defined as an type alias polynomial_module R M := ℕ →₀ M, since there might be different
module structures on ℕ →₀ M of interest. See the docstring of polynomial_module for details.
The R[X]-module M[X] for an R-module M.
This is isomorphic (as an R-module) to M[X] when M is a ring.
We require all the module instances module S (polynomial_module R M) to factor through R except
module R[X] (polynomial_module R M).
In this constraint, we have the following instances for example :
Racts onpolynomial_module R R[X]R[X]acts onpolynomial_module R R[X]asR[Y]acting onR[X][Y]Racts onpolynomial_module R[X] R[X]R[X]acts onpolynomial_module R[X] R[X]asR[X]acting onR[X][Y]R[X][X]acts onpolynomial_module R[X] R[X]asR[X][Y]acting on itself
This is also the reason why R is included in the alias, or else there will be two different
instances of module R[X] (polynomial_module R[X]).
See https://leanprover.zulipchat.com/#narrow/stream/144837-PR-reviews/topic/.2315065.20polynomial.20modules for the full discussion.
Equations
- polynomial_module R M = (ℕ →₀ M)
This is required to have the is_scalar_tower S R M instance to avoid diamonds.
Equations
Equations
The monomial m * x ^ i. This is defeq to finsupp.single_add_hom, and is redefined here
so that it has the desired type signature.
Equations
polynomial_module.single as a linear map.
Equations
polynomial_module R R is isomorphic to R[X] as an R[X] module.
Equations
- polynomial_module.equiv_polynomial_self = {to_fun := (polynomial.to_finsupp_iso R).symm.to_fun, map_add' := _, map_smul' := _, inv_fun := (polynomial.to_finsupp_iso R).symm.inv_fun, left_inv := _, right_inv := _}
polynomial_module R S is isomorphic to S[X] as an R module.
Equations
- polynomial_module.equiv_polynomial = {to_fun := (polynomial.to_finsupp_iso S).symm.to_fun, map_add' := _, map_smul' := _, inv_fun := (polynomial.to_finsupp_iso S).symm.inv_fun, left_inv := _, right_inv := _}
The image of a polynomial under a linear map.
Equations
Evaulate a polynomial p : polynomial_module R M at r : R.
Equations
- polynomial_module.eval r = {to_fun := λ (p : polynomial_module R M), finsupp.sum p (λ (i : ℕ) (m : M), r ^ i • m), map_add' := _, map_smul' := _}
comp p q is the composition of p : R[X] and q : M[X] as q(p(x)).