Extension and restriction of scalars for Lie algebras #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Lie algebras have a well-behaved theory of extension and restriction of scalars.
Main definitions #
Tags #
lie ring, lie algebra, extension of scalars, restriction of scalars, base change
@[protected, instance]
def
lie_algebra.extend_scalars.tensor_product.has_bracket
(R : Type u)
(A : Type w)
(L : Type v)
[comm_ring R]
[comm_ring A]
[algebra R A]
[lie_ring L]
[lie_algebra R L] :
has_bracket (tensor_product R A L) (tensor_product R A L)
Equations
- lie_algebra.extend_scalars.tensor_product.has_bracket R A L = {bracket := λ (x y : tensor_product R A L), ⇑(⇑(bracket' R A L) x) y}
@[protected, instance]
def
lie_algebra.extend_scalars.tensor_product.lie_ring
(R : Type u)
(A : Type w)
(L : Type v)
[comm_ring R]
[comm_ring A]
[algebra R A]
[lie_ring L]
[lie_algebra R L] :
lie_ring (tensor_product R A L)
Equations
- lie_algebra.extend_scalars.tensor_product.lie_ring R A L = {to_add_comm_group := tensor_product.add_comm_group lie_algebra.to_module, to_has_bracket := lie_algebra.extend_scalars.tensor_product.has_bracket R A L _inst_5, add_lie := _, lie_add := _, lie_self := _, leibniz_lie := _}
@[protected, instance]
def
lie_algebra.extend_scalars.lie_algebra
(R : Type u)
(A : Type w)
(L : Type v)
[comm_ring R]
[comm_ring A]
[algebra R A]
[lie_ring L]
[lie_algebra R L] :
lie_algebra A (tensor_product R A L)
Equations
- lie_algebra.extend_scalars.lie_algebra R A L = {to_module := tensor_product.left_module _, lie_smul := _}
@[protected, instance]
def
lie_algebra.restrict_scalars.restrict_scalars.lie_ring
(R : Type u)
(A : Type w)
(L : Type v)
[h : lie_ring L] :
lie_ring (restrict_scalars R A L)
Equations
@[protected, instance]
def
lie_algebra.restrict_scalars.lie_algebra
(R : Type u)
(A : Type w)
(L : Type v)
[h : lie_ring L]
[comm_ring A]
[lie_algebra A L]
[comm_ring R]
[algebra R A] :
lie_algebra R (restrict_scalars R A L)
Equations
- lie_algebra.restrict_scalars.lie_algebra R A L = {to_module := restrict_scalars.module R A L lie_algebra.to_module, lie_smul := _}