Partially defined linear operators on Hilbert spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We will develop the basics of the theory of unbounded operators on Hilbert spaces.
Main definitions #
linear_pmap.is_formal_adjoint: An operatorTis a formal adjoint ofSif for allxin the domain ofTandyin the domain ofS, we have that⟪T x, y⟫ = ⟪x, S y⟫.linear_pmap.adjoint: The adjoint of a mapE →ₗ.[𝕜] Fas a mapF →ₗ.[𝕜] E.
Main statements #
linear_pmap.adjoint_is_formal_adjoint: The adjoint is a formal adjointlinear_pmap.is_formal_adjoint.le_adjoint: Every formal adjoint is contained in the adjointcontinuous_linear_map.to_pmap_adjoint_eq_adjoint_to_pmap_of_dense: The adjoint oncontinuous_linear_mapandlinear_pmapcoincide.
Notation #
- For
T : E →ₗ.[𝕜] Fthe adjoint can be written asT†. This notation is localized inlinear_pmap.
Implementation notes #
We use the junk value pattern to define the adjoint for all linear_pmaps. In the case that
T : E →ₗ.[𝕜] F is not densely defined the adjoint T† is the zero map from T.adjoint_domain to
E.
References #
Tags #
Unbounded operators, closed operators
An operator T is a formal adjoint of S if for all x in the domain of T and y in the
domain of S, we have that ⟪T x, y⟫ = ⟪x, S y⟫.
Equations
- T.is_formal_adjoint S = ∀ (x : ↥(T.domain)) (y : ↥(S.domain)), has_inner.inner (⇑T x) ↑y = has_inner.inner ↑x (⇑S y)
The domain of the adjoint operator.
This definition is needed to construct the adjoint operator and the preferred version to use is
T.adjoint.domain instead of T.adjoint_domain.
The operator λ x, ⟪y, T x⟫ considered as a continuous linear operator from T.adjoint_domain
to 𝕜.
Equations
- T.adjoint_domain_mk_clm y = {to_linear_map := (⇑(innerₛₗ 𝕜) ↑y).comp T.to_fun, cont := _}
The unique continuous extension of the operator adjoint_domain_mk_clm to E.
Equations
- linear_pmap.adjoint_domain_mk_clm_extend hT y = (T.adjoint_domain_mk_clm y).extend T.domain.subtypeL _ linear_pmap.adjoint_domain_mk_clm_extend._proof_3
The adjoint as a linear map from its domain to E.
This is an auxiliary definition needed to define the adjoint operator as a linear_pmap without
the assumption that T.domain is dense.
Equations
- linear_pmap.adjoint_aux hT = {to_fun := λ (y : ↥(T.adjoint_domain)), ⇑((inner_product_space.to_dual 𝕜 E).symm) (linear_pmap.adjoint_domain_mk_clm_extend hT y), map_add' := _, map_smul' := _}
The adjoint operator as a partially defined linear operator.
The fundamental property of the adjoint.
The adjoint is maximal in the sense that it contains every formal adjoint.
Restricting A to a dense submodule and taking the linear_pmap.adjoint is the same
as taking the continuous_linear_map.adjoint interpreted as a linear_pmap.