Partially defined linear operators on Hilbert spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We will develop the basics of the theory of unbounded operators on Hilbert spaces.
Main definitions #
linear_pmap.is_formal_adjoint
: An operatorT
is a formal adjoint ofS
if for allx
in the domain ofT
andy
in the domain ofS
, we have that⟪T x, y⟫ = ⟪x, S y⟫
.linear_pmap.adjoint
: The adjoint of a mapE →ₗ.[𝕜] F
as a mapF →ₗ.[𝕜] E
.
Main statements #
linear_pmap.adjoint_is_formal_adjoint
: The adjoint is a formal adjointlinear_pmap.is_formal_adjoint.le_adjoint
: Every formal adjoint is contained in the adjointcontinuous_linear_map.to_pmap_adjoint_eq_adjoint_to_pmap_of_dense
: The adjoint oncontinuous_linear_map
andlinear_pmap
coincide.
Notation #
- For
T : E →ₗ.[𝕜] F
the adjoint can be written asT†
. This notation is localized inlinear_pmap
.
Implementation notes #
We use the junk value pattern to define the adjoint for all linear_pmap
s. In the case that
T : E →ₗ.[𝕜] F
is not densely defined the adjoint T†
is the zero map from T.adjoint_domain
to
E
.
References #
Tags #
Unbounded operators, closed operators
An operator T
is a formal adjoint of S
if for all x
in the domain of T
and y
in the
domain of S
, we have that ⟪T x, y⟫ = ⟪x, S y⟫
.
Equations
- T.is_formal_adjoint S = ∀ (x : ↥(T.domain)) (y : ↥(S.domain)), has_inner.inner (⇑T x) ↑y = has_inner.inner ↑x (⇑S y)
The domain of the adjoint operator.
This definition is needed to construct the adjoint operator and the preferred version to use is
T.adjoint.domain
instead of T.adjoint_domain
.
The operator λ x, ⟪y, T x⟫
considered as a continuous linear operator from T.adjoint_domain
to 𝕜
.
Equations
- T.adjoint_domain_mk_clm y = {to_linear_map := (⇑(innerₛₗ 𝕜) ↑y).comp T.to_fun, cont := _}
The unique continuous extension of the operator adjoint_domain_mk_clm
to E
.
Equations
- linear_pmap.adjoint_domain_mk_clm_extend hT y = (T.adjoint_domain_mk_clm y).extend T.domain.subtypeL _ linear_pmap.adjoint_domain_mk_clm_extend._proof_3
The adjoint as a linear map from its domain to E
.
This is an auxiliary definition needed to define the adjoint operator as a linear_pmap
without
the assumption that T.domain
is dense.
Equations
- linear_pmap.adjoint_aux hT = {to_fun := λ (y : ↥(T.adjoint_domain)), ⇑((inner_product_space.to_dual 𝕜 E).symm) (linear_pmap.adjoint_domain_mk_clm_extend hT y), map_add' := _, map_smul' := _}
The adjoint operator as a partially defined linear operator.
The fundamental property of the adjoint.
The adjoint is maximal in the sense that it contains every formal adjoint.
Restricting A
to a dense submodule and taking the linear_pmap.adjoint
is the same
as taking the continuous_linear_map.adjoint
interpreted as a linear_pmap
.