The pointwise product on finsupp. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
For the convolution product on finsupp when the domain has a binary operation,
see the type synonyms add_monoid_algebra
(which is in turn used to define polynomial and mv_polynomial)
and monoid_algebra.
@[protected, instance]
The product of f g : α →₀ β is the finitely supported function
whose value at a is f a * g a.
Equations
- finsupp.has_mul = {mul := finsupp.zip_with has_mul.mul finsupp.has_mul._proof_1}
 
    
theorem
finsupp.support_mul
    {α : Type u₁}
    {β : Type u₂}
    [mul_zero_class β]
    [decidable_eq α]
    {g₁ g₂ : α →₀ β} :
@[protected, instance]
    
noncomputable
def
finsupp.mul_zero_class
    {α : Type u₁}
    {β : Type u₂}
    [mul_zero_class β] :
    mul_zero_class (α →₀ β)
Equations
- finsupp.mul_zero_class = function.injective.mul_zero_class coe_fn finsupp.mul_zero_class._proof_1 finsupp.mul_zero_class._proof_2 finsupp.coe_mul
 
@[protected, instance]
    
noncomputable
def
finsupp.semigroup_with_zero
    {α : Type u₁}
    {β : Type u₂}
    [semigroup_with_zero β] :
    semigroup_with_zero (α →₀ β)
Equations
- finsupp.semigroup_with_zero = function.injective.semigroup_with_zero coe_fn finsupp.semigroup_with_zero._proof_1 finsupp.semigroup_with_zero._proof_2 finsupp.semigroup_with_zero._proof_3
 
@[protected, instance]
    
noncomputable
def
finsupp.non_unital_non_assoc_semiring
    {α : Type u₁}
    {β : Type u₂}
    [non_unital_non_assoc_semiring β] :
    Equations
- finsupp.non_unital_non_assoc_semiring = function.injective.non_unital_non_assoc_semiring coe_fn finsupp.non_unital_non_assoc_semiring._proof_1 finsupp.non_unital_non_assoc_semiring._proof_2 finsupp.non_unital_non_assoc_semiring._proof_3 finsupp.non_unital_non_assoc_semiring._proof_4 finsupp.non_unital_non_assoc_semiring._proof_5
 
@[protected, instance]
    
noncomputable
def
finsupp.non_unital_semiring
    {α : Type u₁}
    {β : Type u₂}
    [non_unital_semiring β] :
    non_unital_semiring (α →₀ β)
Equations
- finsupp.non_unital_semiring = function.injective.non_unital_semiring coe_fn finsupp.non_unital_semiring._proof_1 finsupp.non_unital_semiring._proof_2 finsupp.non_unital_semiring._proof_3 finsupp.non_unital_semiring._proof_4 finsupp.non_unital_semiring._proof_5
 
@[protected, instance]
    
noncomputable
def
finsupp.non_unital_comm_semiring
    {α : Type u₁}
    {β : Type u₂}
    [non_unital_comm_semiring β] :
    non_unital_comm_semiring (α →₀ β)
Equations
- finsupp.non_unital_comm_semiring = function.injective.non_unital_comm_semiring coe_fn finsupp.non_unital_comm_semiring._proof_1 finsupp.non_unital_comm_semiring._proof_2 finsupp.non_unital_comm_semiring._proof_3 finsupp.non_unital_comm_semiring._proof_4 finsupp.non_unital_comm_semiring._proof_5
 
@[protected, instance]
    
noncomputable
def
finsupp.non_unital_non_assoc_ring
    {α : Type u₁}
    {β : Type u₂}
    [non_unital_non_assoc_ring β] :
    non_unital_non_assoc_ring (α →₀ β)
Equations
- finsupp.non_unital_non_assoc_ring = function.injective.non_unital_non_assoc_ring coe_fn finsupp.non_unital_non_assoc_ring._proof_1 finsupp.non_unital_non_assoc_ring._proof_2 finsupp.non_unital_non_assoc_ring._proof_3 finsupp.non_unital_non_assoc_ring._proof_4 finsupp.non_unital_non_assoc_ring._proof_5 finsupp.non_unital_non_assoc_ring._proof_6 finsupp.non_unital_non_assoc_ring._proof_7 finsupp.non_unital_non_assoc_ring._proof_8
 
@[protected, instance]
    
noncomputable
def
finsupp.non_unital_ring
    {α : Type u₁}
    {β : Type u₂}
    [non_unital_ring β] :
    non_unital_ring (α →₀ β)
Equations
- finsupp.non_unital_ring = function.injective.non_unital_ring coe_fn finsupp.non_unital_ring._proof_1 finsupp.non_unital_ring._proof_2 finsupp.non_unital_ring._proof_3 finsupp.non_unital_ring._proof_4 finsupp.non_unital_ring._proof_5 finsupp.non_unital_ring._proof_6 finsupp.non_unital_ring._proof_7 finsupp.non_unital_ring._proof_8
 
@[protected, instance]
    
noncomputable
def
finsupp.non_unital_comm_ring
    {α : Type u₁}
    {β : Type u₂}
    [non_unital_comm_ring β] :
    non_unital_comm_ring (α →₀ β)
Equations
- finsupp.non_unital_comm_ring = function.injective.non_unital_comm_ring coe_fn finsupp.non_unital_comm_ring._proof_1 finsupp.non_unital_comm_ring._proof_2 finsupp.non_unital_comm_ring._proof_3 finsupp.non_unital_comm_ring._proof_4 finsupp.non_unital_comm_ring._proof_5 finsupp.non_unital_comm_ring._proof_6 finsupp.non_unital_comm_ring._proof_7 finsupp.non_unital_comm_ring._proof_8
 
@[protected, instance]
The pointwise multiplicative action of functions on finitely supported functions
Equations
- finsupp.pointwise_module = function.injective.module (α → β) finsupp.coe_fn_add_hom finsupp.pointwise_module._proof_1 finsupp.coe_pointwise_smul