Category instance for topological spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We introduce the bundled category Top
of topological spaces together with the functors discrete
and trivial
from the category of types to Top
which equip a type with the corresponding
discrete, resp. trivial, topology. For a proof that these functors are left, resp. right adjoint
to the forgetful functor, see topology.category.Top.adjunctions
.
The category of topological spaces and continuous maps.
Equations
Instances for Top
- Top.large_category
- Top.concrete_category
- Top.has_coe_to_sort
- Top.inhabited
- Top.Top_has_limits_of_size
- Top.Top_has_limits
- Top.Top_has_colimits_of_size
- Top.Top_has_colimits
- Top.has_forget_to_Meas
- UniformSpace.has_forget_to_Top
- TopCommRing.has_forget_to_Top
- Profinite.has_forget₂
- category_theory.Top.finitary_extensive
- algebraic_geometry.PresheafedSpace.coe_carrier
- algebraic_geometry.SheafedSpace.coe_carrier
@[protected, instance]
Equations
- Top.bundled_hom = {to_fun := continuous_map.to_fun, id := continuous_map.id, comp := continuous_map.comp, hom_ext := continuous_map.coe_injective, id_to_fun := Top.bundled_hom._proof_1, comp_to_fun := Top.bundled_hom._proof_2}
@[protected, instance]
@[protected, instance]
Equations
Construct a bundled Top
from the underlying type and the typeclass.
Instances for ↥Top.of
@[protected, instance]
Equations
- X.topological_space = X.str
@[protected, instance]
Equations
@[protected, instance]
Any homeomorphisms induces an isomorphism in Top
.
Equations
- Top.iso_of_homeo f = {hom := {to_fun := ⇑f, continuous_to_fun := _}, inv := {to_fun := ⇑(f.symm), continuous_to_fun := _}, hom_inv_id' := _, inv_hom_id' := _}
@[simp]
theorem
Top.homeo_of_iso_apply
{X Y : Top}
(f : X ≅ Y)
(ᾰ : ↥X) :
⇑(Top.homeo_of_iso f) ᾰ = ⇑(f.hom) ᾰ
@[simp]
@[simp]
@[simp]
theorem
Top.open_embedding_iff_comp_is_iso
{X Y Z : Top}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[category_theory.is_iso g] :
open_embedding ⇑(f ≫ g) ↔ open_embedding ⇑f
@[simp]
theorem
Top.open_embedding_iff_is_iso_comp
{X Y Z : Top}
(f : X ⟶ Y)
(g : Y ⟶ Z)
[category_theory.is_iso f] :
open_embedding ⇑(f ≫ g) ↔ open_embedding ⇑g