mathlib3 documentation

data.set.intervals.order_iso

Lemmas about images of intervals under order isomorphisms. #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

@[simp]
theorem order_iso.preimage_Iic {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (b : β) :
@[simp]
theorem order_iso.preimage_Ici {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (b : β) :
@[simp]
theorem order_iso.preimage_Iio {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (b : β) :
@[simp]
theorem order_iso.preimage_Ioi {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (b : β) :
@[simp]
theorem order_iso.preimage_Icc {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a b : β) :
e ⁻¹' set.Icc a b = set.Icc ((e.symm) a) ((e.symm) b)
@[simp]
theorem order_iso.preimage_Ico {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a b : β) :
e ⁻¹' set.Ico a b = set.Ico ((e.symm) a) ((e.symm) b)
@[simp]
theorem order_iso.preimage_Ioc {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a b : β) :
e ⁻¹' set.Ioc a b = set.Ioc ((e.symm) a) ((e.symm) b)
@[simp]
theorem order_iso.preimage_Ioo {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a b : β) :
e ⁻¹' set.Ioo a b = set.Ioo ((e.symm) a) ((e.symm) b)
@[simp]
theorem order_iso.image_Iic {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a : α) :
@[simp]
theorem order_iso.image_Ici {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a : α) :
@[simp]
theorem order_iso.image_Iio {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a : α) :
@[simp]
theorem order_iso.image_Ioi {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a : α) :
@[simp]
theorem order_iso.image_Ioo {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a b : α) :
e '' set.Ioo a b = set.Ioo (e a) (e b)
@[simp]
theorem order_iso.image_Ioc {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a b : α) :
e '' set.Ioc a b = set.Ioc (e a) (e b)
@[simp]
theorem order_iso.image_Ico {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a b : α) :
e '' set.Ico a b = set.Ico (e a) (e b)
@[simp]
theorem order_iso.image_Icc {α : Type u_1} {β : Type u_2} [preorder α] [preorder β] (e : α ≃o β) (a b : α) :
e '' set.Icc a b = set.Icc (e a) (e b)
def order_iso.Iic_top {α : Type u_1} [preorder α] [order_top α] :

Order isomorphism between Iic (⊤ : α) and α when α has a top element

Equations
def order_iso.Ici_bot {α : Type u_1} [preorder α] [order_bot α] :

Order isomorphism between Ici (⊥ : α) and α when α has a bottom element

Equations