# mathlib3documentation

topology.algebra.module.linear_pmap

# Partially defined linear operators over topological vector spaces #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

We define basic notions of partially defined linear operators, which we call unbounded operators for short. In this file we prove all elementary properties of unbounded operators that do not assume that the underlying spaces are normed.

## Main definitions #

• linear_pmap.is_closed: An unbounded operator is closed iff its graph is closed.
• linear_pmap.is_closable: An unbounded operator is closable iff the closure of its graph is a graph.
• linear_pmap.closure: For a closable unbounded operator f : linear_pmap R E F the closure is the smallest closed extension of f. If f is not closable, then f.closure is defined as f.
• linear_pmap.has_core: a submodule contained in the domain is a core if restricting to the core does not lose information about the unbounded operator.

## Main statements #

• linear_pmap.closable_iff_exists_closed_extension: an unbounded operator is closable iff it has a closed extension.
• linear_pmap.closable.exists_unique: there exists a unique closure
• linear_pmap.closure_has_core: the domain of f is a core of its closure

## Tags #

Unbounded operators, closed operators

### Closed and closable operators #

def linear_pmap.is_closed {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] (f : E →ₗ.[R] F) :
Prop

An unbounded operator is closed iff its graph is closed.

Equations
def linear_pmap.is_closable {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] (f : E →ₗ.[R] F) :
Prop

An unbounded operator is closable iff the closure of its graph is a graph.

Equations
theorem linear_pmap.is_closed.is_closable {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f : E →ₗ.[R] F} (hf : f.is_closed) :

A closed operator is trivially closable.

theorem linear_pmap.is_closable.le_is_closable {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f g : E →ₗ.[R] F} (hf : f.is_closable) (hfg : g f) :

If g has a closable extension f, then g itself is closable.

theorem linear_pmap.is_closable.exists_unique {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f : E →ₗ.[R] F} (hf : f.is_closable) :
∃! (f' : E →ₗ.[R] F),

The closure is unique.

noncomputable def linear_pmap.closure {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] (f : E →ₗ.[R] F) :

If f is closable, then f.closure is the closure. Otherwise it is defined as f.closure = f.

Equations
theorem linear_pmap.closure_def {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f : E →ₗ.[R] F} (hf : f.is_closable) :
theorem linear_pmap.closure_def' {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f : E →ₗ.[R] F} (hf : ¬f.is_closable) :
theorem linear_pmap.is_closable.graph_closure_eq_closure_graph {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f : E →ₗ.[R] F} (hf : f.is_closable) :

The closure (as a submodule) of the graph is equal to the graph of the closure (as a linear_pmap).

theorem linear_pmap.le_closure {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] (f : E →ₗ.[R] F) :

A linear_pmap is contained in its closure.

theorem linear_pmap.is_closable.closure_mono {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f g : E →ₗ.[R] F} (hg : g.is_closable) (h : f g) :
theorem linear_pmap.is_closable.closure_is_closed {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f : E →ₗ.[R] F} (hf : f.is_closable) :

If f is closable, then the closure is closed.

theorem linear_pmap.is_closable.closure_is_closable {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f : E →ₗ.[R] F} (hf : f.is_closable) :

If f is closable, then the closure is closable.

theorem linear_pmap.is_closable_iff_exists_closed_extension {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f : E →ₗ.[R] F} :
f.is_closable (g : E →ₗ.[R] F) (hg : g.is_closed), f g

### The core of a linear operator #

structure linear_pmap.has_core {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] (f : E →ₗ.[R] F) (S : E) :
Prop

A submodule S is a core of f if the closure of the restriction of f to S is again f.

theorem linear_pmap.has_core_def {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] {f : E →ₗ.[R] F} {S : E} (h : f.has_core S) :
theorem linear_pmap.closure_has_core {R : Type u_1} {E : Type u_2} {F : Type u_3} [comm_ring R] [ E] [ F] [ E] [ F] (f : E →ₗ.[R] F) :

For every unbounded operator f the submodule f.domain is a core of its closure.

Note that we don't require that f is closable, due to the definition of the closure.