The category of "pairwise intersections". #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Given ι : Type v
, we build the diagram category pairwise ι
with objects single i
and pair i j
, for i j : ι
,
whose only non-identity morphisms are
left : pair i j ⟶ single i
and right : pair i j ⟶ single j
.
We use this later in describing (one formulation of) the sheaf condition.
Given any function U : ι → α
, where α
is some complete lattice (e.g. (opens X)ᵒᵖ
),
we produce a functor pairwise ι ⥤ α
in the obvious way,
and show that supr U
provides a colimit cocone over this functor.
- single : Π {ι : Type v}, ι → category_theory.pairwise ι
- pair : Π {ι : Type v}, ι → ι → category_theory.pairwise ι
An inductive type representing either a single term of a type ι
, or a pair of terms.
We use this as the objects of a category to describe the sheaf condition.
Instances for category_theory.pairwise
- category_theory.pairwise.has_sizeof_inst
- category_theory.pairwise.pairwise_inhabited
- category_theory.pairwise.category_theory.category
- id_single : Π {ι : Type v} (i : ι), (category_theory.pairwise.single i).hom (category_theory.pairwise.single i)
- id_pair : Π {ι : Type v} (i j : ι), (category_theory.pairwise.pair i j).hom (category_theory.pairwise.pair i j)
- left : Π {ι : Type v} (i j : ι), (category_theory.pairwise.pair i j).hom (category_theory.pairwise.single i)
- right : Π {ι : Type v} (i j : ι), (category_theory.pairwise.pair i j).hom (category_theory.pairwise.single j)
Morphisms in the category pairwise ι
. The only non-identity morphisms are
left i j : single i ⟶ pair i j
and right i j : single j ⟶ pair i j
.
Instances for category_theory.pairwise.hom
- category_theory.pairwise.hom.has_sizeof_inst
- category_theory.pairwise.hom_inhabited
The identity morphism in pairwise ι
.
Composition of morphisms in pairwise ι
.
Equations
- category_theory.pairwise.comp (category_theory.pairwise.hom.right i _x) (category_theory.pairwise.hom.id_single _x) = category_theory.pairwise.hom.right i _x
- category_theory.pairwise.comp (category_theory.pairwise.hom.left _x j) (category_theory.pairwise.hom.id_single _x) = category_theory.pairwise.hom.left _x j
- category_theory.pairwise.comp (category_theory.pairwise.hom.id_pair i j) g = g
- category_theory.pairwise.comp (category_theory.pairwise.hom.id_single i) g = g
Equations
- category_theory.pairwise.category_theory.category = {to_category_struct := {to_quiver := {hom := category_theory.pairwise.hom ι}, id := category_theory.pairwise.id ι, comp := λ (X Y Z : category_theory.pairwise ι) (f : X ⟶ Y) (g : Y ⟶ Z), category_theory.pairwise.comp f g}, id_comp' := _, comp_id' := _, assoc' := _}
Auxiliary definition for diagram
.
Equations
Auxiliary definition for diagram
.
Equations
- category_theory.pairwise.diagram_map U (category_theory.pairwise.hom.right i j) = category_theory.hom_of_le _
- category_theory.pairwise.diagram_map U (category_theory.pairwise.hom.left i j) = category_theory.hom_of_le _
- category_theory.pairwise.diagram_map U (category_theory.pairwise.hom.id_pair i j) = 𝟙 (category_theory.pairwise.diagram_obj U (category_theory.pairwise.pair i j))
- category_theory.pairwise.diagram_map U (category_theory.pairwise.hom.id_single i) = 𝟙 (category_theory.pairwise.diagram_obj U (category_theory.pairwise.single i))
Given a function U : ι → α
for [semilattice_inf α]
, we obtain a functor pairwise ι ⥤ α
,
sending single i
to U i
and pair i j
to U i ⊓ U j
,
and the morphisms to the obvious inequalities.
Equations
- category_theory.pairwise.diagram U = {obj := category_theory.pairwise.diagram_obj U _inst_1, map := λ (X Y : category_theory.pairwise ι) (f : X ⟶ Y), category_theory.pairwise.diagram_map U f, map_id' := _, map_comp' := _}
Auxiliary definition for cocone
.
Given a function U : ι → α
for [complete_lattice α]
,
supr U
provides a cocone over diagram U
.
Equations
- category_theory.pairwise.cocone U = {X := supr U, ι := {app := category_theory.pairwise.cocone_ι_app U _inst_1, naturality' := _}}
Given a function U : ι → α
for [complete_lattice α]
,
infi U
provides a limit cone over diagram U
.
Equations
- category_theory.pairwise.cocone_is_colimit U = {desc := λ (s : category_theory.limits.cocone (category_theory.pairwise.diagram U)), category_theory.hom_of_le _, fac' := _, uniq' := _}