Properties of morphisms between Schemes #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We provide the basic framework for talking about properties of morphisms between Schemes.
A morphism_property Scheme is a predicate on morphisms between schemes, and an
affine_target_morphism_property is a predicate on morphisms into affine schemes. Given a
P : affine_target_morphism_property, we may construct a morphism_property called
target_affine_locally P that holds for f : X ⟶ Y whenever P holds for the
restriction of f on every affine open subset of Y.
Main definitions #
- algebraic_geometry.affine_target_morphism_property.is_local: We say that- P.is_localif- Psatisfies the assumptions of the affine communication lemma (- algebraic_geometry.of_affine_open_cover). That is,
- Prespects isomorphisms.
- If Pholds forf : X ⟶ Y, thenPholds forf ∣_ Y.basic_open rfor any global sectionr.
- If Pholds forf ∣_ Y.basic_open rfor allrin a spanning set of the global sections, thenPholds forf.
- algebraic_geometry.property_is_local_at_target: We say that- property_is_local_at_target Pfor- P : morphism_property Schemeif
- Prespects isomorphisms.
- If Pholds forf : X ⟶ Y, thenPholds forf ∣_ Ufor anyU.
- If Pholds forf ∣_ Ufor an open coverUofY, thenPholds forf.
Main results #
- algebraic_geometry.affine_target_morphism_property.is_local.affine_open_cover_tfae: If- P.is_local, then- target_affine_locally P fiff there exists an affine cover- { Uᵢ }of- Ysuch that- Pholds for- f ∣_ Uᵢ.
- algebraic_geometry.affine_target_morphism_property.is_local_of_open_cover_imply: If the existance of an affine cover- { Uᵢ }of- Ysuch that- Pholds for- f ∣_ Uᵢimplies- target_affine_locally P f, then- P.is_local.
- algebraic_geometry.affine_target_morphism_property.is_local.affine_target_iff: If- Yis affine and- f : X ⟶ Y, then- target_affine_locally P f ↔ P fprovided- P.is_local.
- algebraic_geometry.affine_target_morphism_property.is_local.target_affine_locally_is_local: If- P.is_local, then- property_is_local_at_target (target_affine_locally P).
- algebraic_geometry.property_is_local_at_target.open_cover_tfae: If- property_is_local_at_target P, then- P fiff there exists an open cover- { Uᵢ }of- Ysuch that- Pholds for- f ∣_ Uᵢ.
These results should not be used directly, and should be ported to each property that is local.
An affine_target_morphism_property is a class of morphisms from an arbitrary scheme into an
affine scheme.
Equations
- algebraic_geometry.affine_target_morphism_property = Π ⦃X Y : algebraic_geometry.Scheme⦄, (X ⟶ Y) → Π [_inst_1 : algebraic_geometry.is_affine Y], Prop
Instances for algebraic_geometry.affine_target_morphism_property
        
        
    is_iso as a morphism_property.
is_iso as an affine_morphism_property.
Equations
- algebraic_geometry.Scheme.affine_target_is_iso = λ (X Y : algebraic_geometry.Scheme) (f : X ⟶ Y) (H : algebraic_geometry.is_affine Y), category_theory.is_iso f
A affine_target_morphism_property can be extended to a morphism_property such that it
never holds when the target is not affine
Equations
- P.to_property = λ (X Y : algebraic_geometry.Scheme) (f : X ⟶ Y), ∃ (h : algebraic_geometry.is_affine Y), P f
For a P : affine_target_morphism_property, target_affine_locally P holds for
f : X ⟶ Y whenever P holds for the restriction of f on every affine open subset of Y.
Equations
- algebraic_geometry.target_affine_locally P = λ {X Y : algebraic_geometry.Scheme} (f : X ⟶ Y), ∀ (U : ↥(Y.affine_opens)), P (f ∣_ ↑U)
- respects_iso : P.to_property.respects_iso
- to_basic_open : ∀ {X Y : algebraic_geometry.Scheme} [_inst_1 : algebraic_geometry.is_affine Y] (f : X ⟶ Y) (r : ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op ⊤))), P f → P (f ∣_ Y.basic_open r)
- of_basic_open_cover : ∀ {X Y : algebraic_geometry.Scheme} [_inst_1 : algebraic_geometry.is_affine Y] (f : X ⟶ Y) (s : finset ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.presheaf.obj (opposite.op ⊤))), ideal.span ↑s = ⊤ → (∀ (r : ↥s), P (f ∣_ Y.basic_open r.val)) → P f
We say that P : affine_target_morphism_property is a local property if
- Prespects isomorphisms.
- If Pholds forf : X ⟶ Y, thenPholds forf ∣_ Y.basic_open rfor any global sectionr.
- If Pholds forf ∣_ Y.basic_open rfor allrin a spanning set of the global sections, thenPholds forf.
- respects_iso : P.respects_iso
- restrict : ∀ {X Y : algebraic_geometry.Scheme} (f : X ⟶ Y) (U : topological_space.opens ↥(Y.to_LocallyRingedSpace.to_SheafedSpace.to_PresheafedSpace.carrier)), P f → P (f ∣_ U)
- of_open_cover : ∀ {X Y : algebraic_geometry.Scheme} (f : X ⟶ Y) (𝒰 : Y.open_cover), (∀ (i : 𝒰.J), P category_theory.limits.pullback.snd) → P f
We say that P : morphism_property Scheme is local at the target if
- Prespects isomorphisms.
- If Pholds forf : X ⟶ Y, thenPholds forf ∣_ Ufor anyU.
- If Pholds forf ∣_ Ufor an open coverUofY, thenPholds forf.
A P : affine_target_morphism_property is stable under base change if P holds for Y ⟶ S
implies that P holds for X ×ₛ Y ⟶ X with X and S affine schemes.
Equations
- P.stable_under_base_change = ∀ ⦃X Y S : algebraic_geometry.Scheme⦄ [_inst_1 : algebraic_geometry.is_affine S] [_inst_2 : algebraic_geometry.is_affine X] (f : X ⟶ S) (g : Y ⟶ S), P g → P category_theory.limits.pullback.fst
The affine_target_morphism_property associated to (target_affine_locally P).diagonal.
See diagonal_target_affine_locally_eq_target_affine_locally.
Equations
- P.diagonal = λ (X Y : algebraic_geometry.Scheme) (f : X ⟶ Y) (hf : algebraic_geometry.is_affine Y), ∀ {U₁ U₂ : algebraic_geometry.Scheme} (f₁ : U₁ ⟶ X) (f₂ : U₂ ⟶ X) [_inst_1 : algebraic_geometry.is_affine U₁] [_inst_2 : algebraic_geometry.is_affine U₂] [_inst_3 : algebraic_geometry.is_open_immersion f₁] [_inst_4 : algebraic_geometry.is_open_immersion f₂], P (category_theory.limits.pullback.map_desc f₁ f₂ f)
topologically P holds for a morphism if the underlying topological map satisfies P.
Equations
- algebraic_geometry.morphism_property.topologically P = λ (X Y : algebraic_geometry.Scheme) (f : X ⟶ Y), P ⇑(f.val.base)