Box-additive functions defined by measures #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we prove a few simple facts about rectangular boxes, partitions, and measures:
- given a box
I : box ι
, its coercion toset (ι → ℝ)
andI.Icc
are measurable sets; - if
μ
is a locally finite measure, then(I : set (ι → ℝ))
andI.Icc
have finite measure; - if
μ
is a locally finite measure, thenλ J, (μ J).to_real
is a box additive function.
For the last statement, we both prove it as a proposition and define a bundled
box_integral.box_additive
function.
Tags #
rectangular box, measure
theorem
box_integral.box.measure_Icc_lt_top
{ι : Type u_1}
(I : box_integral.box ι)
(μ : measure_theory.measure (ι → ℝ))
[measure_theory.is_locally_finite_measure μ] :
⇑μ (⇑box_integral.box.Icc I) < ⊤
theorem
box_integral.box.measure_coe_lt_top
{ι : Type u_1}
(I : box_integral.box ι)
(μ : measure_theory.measure (ι → ℝ))
[measure_theory.is_locally_finite_measure μ] :
theorem
box_integral.prepartition.measure_Union_to_real
{ι : Type u_1}
[finite ι]
{I : box_integral.box ι}
(π : box_integral.prepartition I)
(μ : measure_theory.measure (ι → ℝ))
[measure_theory.is_locally_finite_measure μ] :
@[simp]
theorem
measure_theory.measure.to_box_additive_apply
{ι : Type u_1}
[fintype ι]
(μ : measure_theory.measure (ι → ℝ))
[measure_theory.is_locally_finite_measure μ]
(J : box_integral.box ι) :
def
measure_theory.measure.to_box_additive
{ι : Type u_1}
[fintype ι]
(μ : measure_theory.measure (ι → ℝ))
[measure_theory.is_locally_finite_measure μ] :
If μ
is a locally finite measure on ℝⁿ
, then λ J, (μ J).to_real
is a box-additive
function.
Equations
- μ.to_box_additive = {to_fun := λ (J : box_integral.box ι), (⇑μ ↑J).to_real, sum_partition_boxes' := _}
@[simp]
theorem
box_integral.box.volume_apply
{ι : Type u_1}
[fintype ι]
(I : box_integral.box ι) :
⇑(measure_theory.measure_space.volume.to_box_additive) I = finset.univ.prod (λ (i : ι), I.upper i - I.lower i)
@[protected]
noncomputable
def
box_integral.box_additive_map.volume
{ι : Type u_1}
[fintype ι]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space ℝ E] :
box_integral.box_additive_map ι (E →L[ℝ] E) ⊤
Box-additive map sending each box I
to the continuous linear endomorphism
x ↦ (volume I).to_real • x
.
theorem
box_integral.box_additive_map.volume_apply
{ι : Type u_1}
[fintype ι]
{E : Type u_2}
[normed_add_comm_group E]
[normed_space ℝ E]
(I : box_integral.box ι)
(x : E) :
⇑(⇑box_integral.box_additive_map.volume I) x = finset.univ.prod (λ (j : ι), I.upper j - I.lower j) • x