Integral average of a function #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we define measure_theory.average μ f
(notation: ⨍ x, f x ∂μ
) to be the average
value of f
with respect to measure μ
. It is defined as ∫ x, f x ∂((μ univ)⁻¹ • μ)
, so it
is equal to zero if f
is not integrable or if μ
is an infinite measure. If μ
is a probability
measure, then the average of any function is equal to its integral.
For the average on a set, we use ⨍ x in s, f x ∂μ
(notation for ⨍ x, f x ∂(μ.restrict s)
). For
average w.r.t. the volume, one can omit ∂volume
.
Both have a version for the Lebesgue integral rather than Bochner.
We prove several version of the first moment method: An integrable function is below/above its average on a set of positive measure.
Implementation notes #
The average is defined as an integral over (μ univ)⁻¹ • μ
so that all theorems about Bochner
integrals work for the average without modifications. For theorems that require integrability of a
function, we provide a convenience lemma measure_theory.integrable.to_average
.
Tags #
integral, center mass, average value
Average value of a function w.r.t. a measure #
The (Bochner, Lebesgue) average value of a function f
w.r.t. a measure μ
(notation:
⨍ x, f x ∂μ
, ⨍⁻ x, f x ∂μ
) is defined as the (Bochner, Lebesgue) integral divided by the total
measure, so it is equal to zero if μ
is an infinite measure, and (typically) equal to infinity if
f
is not integrable. If μ
is a probability measure, then the average of any function is equal to
its integral.
Average value of an ℝ≥0∞
-valued function f
w.r.t. a measure μ
, notation: ⨍⁻ x, f x ∂μ
.
It is defined as μ univ⁻¹ * ∫⁻ x, f x ∂μ
, so it is equal to zero if μ
is an infinite measure. If
μ
is a probability measure, then the average of any function is equal to its integral.
For the average on a set, use ⨍⁻ x in s, f x ∂μ
(defined as ⨍⁻ x, f x ∂(μ.restrict s)
). For
average w.r.t. the volume, one can omit ∂volume
.
Average value of a function f
w.r.t. a measure μ
, notation: ⨍ x, f x ∂μ
. It is defined as
(μ univ).to_real⁻¹ • ∫ x, f x ∂μ
, so it is equal to zero if f
is not integrable or if μ
is an
infinite measure. If μ
is a probability measure, then the average of any function is equal to its
integral.
For the average on a set, use ⨍ x in s, f x ∂μ
(defined as ⨍ x, f x ∂(μ.restrict s)
). For
average w.r.t. the volume, one can omit ∂volume
.
First moment method #
First moment method. An integrable function is smaller than its mean on a set of positive measure.
First moment method. An integrable function is greater than its mean on a set of positive measure.
First moment method. The minimum of an integrable function is smaller than its mean.
First moment method. The maximum of an integrable function is greater than its mean.
First moment method. An integrable function is smaller than its mean on a set of positive measure.
First moment method. An integrable function is greater than its mean on a set of positive measure.
First moment method. The minimum of an integrable function is smaller than its mean.
First moment method. The maximum of an integrable function is greater than its mean.
First moment method. The minimum of an integrable function is smaller than its mean, while avoiding a null set.
First moment method. The maximum of an integrable function is greater than its mean, while avoiding a null set.
First moment method. An integrable function is smaller than its integral on a set of positive measure.
First moment method. An integrable function is greater than its integral on a set of positive measure.
First moment method. The minimum of an integrable function is smaller than its integral.
First moment method. The maximum of an integrable function is greater than its integral.
First moment method. The minimum of an integrable function is smaller than its integral, while avoiding a null set.
First moment method. The maximum of an integrable function is greater than its integral, while avoiding a null set.
First moment method. A measurable function is smaller than its mean on a set of positive measure.
First moment method. A measurable function is greater than its mean on a set of positive measure.
First moment method. The minimum of a measurable function is smaller than its mean.
First moment method. The maximum of a measurable function is greater than its mean.
First moment method. A measurable function is greater than its mean on a set of positive measure.
First moment method. The maximum of a measurable function is greater than its mean.
First moment method. The maximum of a measurable function is greater than its mean, while avoiding a null set.
First moment method. A measurable function is smaller than its mean on a set of positive measure.
First moment method. The minimum of a measurable function is smaller than its mean.
First moment method. The minimum of a measurable function is smaller than its mean, while avoiding a null set.
First moment method. A measurable function is smaller than its integral on a set of positive measure.
First moment method. A measurable function is greater than its integral on a set of positive measure.
First moment method. The minimum of a measurable function is smaller than its integral.
First moment method. The maximum of a measurable function is greater than its integral.
First moment method. The minimum of a measurable function is smaller than its integral, while avoiding a null set.
First moment method. The maximum of a measurable function is greater than its integral, while avoiding a null set.