Matrices #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[nolint]
def
dmatrix
(m : Type u)
(n : Type u')
[fintype m]
[fintype n]
(α : m → n → Type v) :
Type (max u u' v)
dmatrix m n
is the type of dependently typed matrices
whose rows are indexed by the fintype m
and
whose columns are indexed by the fintype n
.
Instances for dmatrix
- dmatrix.inhabited
- dmatrix.has_add
- dmatrix.add_semigroup
- dmatrix.add_comm_semigroup
- dmatrix.has_zero
- dmatrix.add_monoid
- dmatrix.add_comm_monoid
- dmatrix.has_neg
- dmatrix.has_sub
- dmatrix.add_group
- dmatrix.add_comm_group
- dmatrix.unique
- dmatrix.subsingleton
- dmatrix.subsingleton_of_empty_left
- dmatrix.subsingleton_of_empty_right
dmatrix.col u
is the column matrix whose entries are given by u
.
Equations
- dmatrix.col w x y = w x
dmatrix.row u
is the row matrix whose entries are given by u
.
Equations
- dmatrix.row v x y = v y
@[protected, instance]
def
dmatrix.add_semigroup
{m : Type u_2}
{n : Type u_3}
[fintype m]
[fintype n]
{α : m → n → Type v}
[Π (i : m) (j : n), add_semigroup (α i j)] :
add_semigroup (dmatrix m n α)
Equations
@[protected, instance]
def
dmatrix.add_comm_semigroup
{m : Type u_2}
{n : Type u_3}
[fintype m]
[fintype n]
{α : m → n → Type v}
[Π (i : m) (j : n), add_comm_semigroup (α i j)] :
add_comm_semigroup (dmatrix m n α)
Equations
@[protected, instance]
def
dmatrix.add_monoid
{m : Type u_2}
{n : Type u_3}
[fintype m]
[fintype n]
{α : m → n → Type v}
[Π (i : m) (j : n), add_monoid (α i j)] :
add_monoid (dmatrix m n α)
Equations
@[protected, instance]
def
dmatrix.add_comm_monoid
{m : Type u_2}
{n : Type u_3}
[fintype m]
[fintype n]
{α : m → n → Type v}
[Π (i : m) (j : n), add_comm_monoid (α i j)] :
add_comm_monoid (dmatrix m n α)
Equations
@[protected, instance]
def
dmatrix.add_comm_group
{m : Type u_2}
{n : Type u_3}
[fintype m]
[fintype n]
{α : m → n → Type v}
[Π (i : m) (j : n), add_comm_group (α i j)] :
add_comm_group (dmatrix m n α)
Equations
@[protected, instance]
def
dmatrix.subsingleton
{m : Type u_2}
{n : Type u_3}
[fintype m]
[fintype n]
{α : m → n → Type v}
[∀ (i : m) (j : n), subsingleton (α i j)] :
subsingleton (dmatrix m n α)
def
add_monoid_hom.map_dmatrix
{m : Type u_2}
{n : Type u_3}
[fintype m]
[fintype n]
{α : m → n → Type v}
[Π (i : m) (j : n), add_monoid (α i j)]
{β : m → n → Type w}
[Π (i : m) (j : n), add_monoid (β i j)]
(f : Π ⦃i : m⦄ ⦃j : n⦄, α i j →+ β i j) :
The add_monoid_hom
between spaces of dependently typed matrices
induced by an add_monoid_hom
between their coefficients.
@[simp]
theorem
add_monoid_hom.map_dmatrix_apply
{m : Type u_2}
{n : Type u_3}
[fintype m]
[fintype n]
{α : m → n → Type v}
[Π (i : m) (j : n), add_monoid (α i j)]
{β : m → n → Type w}
[Π (i : m) (j : n), add_monoid (β i j)]
(f : Π ⦃i : m⦄ ⦃j : n⦄, α i j →+ β i j)
(M : dmatrix m n α) :
⇑(add_monoid_hom.map_dmatrix f) M = M.map (λ (i : m) (j : n), ⇑f)