Augmented simplicial objects with an extra degeneracy #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In simplicial homotopy theory, in order to prove that the connected components
of a simplicial set X
are contractible, it suffices to construct an extra
degeneracy as it is defined in Simplicial Homotopy Theory by Goerss-Jardine p. 190.
It consists of a series of maps π₀ X → X _[0]
and X _[n] → X _[n+1]
which
behave formally like an extra degeneracy σ (-1)
. It can be thought as a datum
associated to the augmented simplicial set X → π₀ X
.
In this file, we adapt this definition to the case of augmented simplicial objects in any category.
Main definitions #
- the structure
extra_degeneracy X
for anyX : simplicial_object.augmented C
extra_degeneracy.map
: extra degeneracies are preserved by the application of any functorC ⥤ D
sSet.augmented.standard_simplex.extra_degeneracy
: the standardn
-simplex has an extra degeneracyarrow.augmented_cech_nerve.extra_degeneracy
: the Čech nerve of a split epimorphism has an extra degeneracyextra_degeneracy.homotopy_equiv
: in the case the categoryC
is preadditive, if we have an extra degeneracy onX : simplicial_object.augmented C
, then the augmentation on the alternating face map complex ofX
is a homotopy equivalence.
References #
- s' : category_theory.simplicial_object.augmented.point.obj X ⟶ (category_theory.simplicial_object.augmented.drop.obj X).obj (opposite.op (simplex_category.mk 0))
- s : Π (n : ℕ), (category_theory.simplicial_object.augmented.drop.obj X).obj (opposite.op (simplex_category.mk n)) ⟶ (category_theory.simplicial_object.augmented.drop.obj X).obj (opposite.op (simplex_category.mk (n + 1)))
- s'_comp_ε' : self.s' ≫ X.hom.app (opposite.op (simplex_category.mk 0)) = 𝟙 (category_theory.simplicial_object.augmented.point.obj X)
- s₀_comp_δ₁' : self.s 0 ≫ (category_theory.simplicial_object.augmented.drop.obj X).δ 1 = X.hom.app (opposite.op (simplex_category.mk 0)) ≫ self.s'
- s_comp_δ₀' : ∀ (n : ℕ), self.s n ≫ (category_theory.simplicial_object.augmented.drop.obj X).δ 0 = 𝟙 ((category_theory.simplicial_object.augmented.drop.obj X).obj (opposite.op (simplex_category.mk n)))
- s_comp_δ' : ∀ (n : ℕ) (i : fin (n + 2)), self.s (n + 1) ≫ (category_theory.simplicial_object.augmented.drop.obj X).δ i.succ = (category_theory.simplicial_object.augmented.drop.obj X).δ i ≫ self.s n
- s_comp_σ' : ∀ (n : ℕ) (i : fin (n + 1)), self.s n ≫ (category_theory.simplicial_object.augmented.drop.obj X).σ i.succ = (category_theory.simplicial_object.augmented.drop.obj X).σ i ≫ self.s (n + 1)
The datum of an extra degeneracy is a technical condition on
augmented simplicial objects. The morphisms s'
and s n
of the
structure formally behave like extra degeneracies σ (-1)
.
Instances for simplicial_object.augmented.extra_degeneracy
- simplicial_object.augmented.extra_degeneracy.has_sizeof_inst
- sSet.augmented.standard_simplex.nonempty_extra_degeneracy_standard_simplex
If ed
is an extra degeneracy for X : simplicial_object.augmented C
and
F : C ⥤ D
is a functor, then ed.map F
is an extra degeneracy for the
augmented simplical object in D
obtained by applying F
to X
.
Equations
- ed.map F = {s' := F.map ed.s', s := λ (n : ℕ), F.map (ed.s n), s'_comp_ε' := _, s₀_comp_δ₁' := _, s_comp_δ₀' := _, s_comp_δ' := _, s_comp_σ' := _}
If X
and Y
are isomorphic augmented simplicial objects, then an extra
degeneracy for X
gives also an extra degeneracy for Y
Equations
- simplicial_object.augmented.extra_degeneracy.of_iso e ed = {s' := (category_theory.simplicial_object.augmented.point.map_iso e).inv ≫ ed.s' ≫ (category_theory.simplicial_object.augmented.drop.map_iso e).hom.app (opposite.op (simplex_category.mk 0)), s := λ (n : ℕ), (category_theory.simplicial_object.augmented.drop.map_iso e).inv.app (opposite.op (simplex_category.mk n)) ≫ ed.s n ≫ (category_theory.simplicial_object.augmented.drop.map_iso e).hom.app (opposite.op (simplex_category.mk (n + 1))), s'_comp_ε' := _, s₀_comp_δ₁' := _, s_comp_δ₀' := _, s_comp_δ' := _, s_comp_σ' := _}
The shift of a morphism f : [n] → Δ
in simplex_category
corresponds to
the monotone map which sends 0
to 0
and i.succ
to f.to_order_hom i
.
The obvious extra degeneracy on the standard simplex.
Equations
- sSet.augmented.standard_simplex.extra_degeneracy Δ = {s' := λ (x : category_theory.simplicial_object.augmented.point.obj (sSet.augmented.standard_simplex.obj Δ)), simplex_category.hom.mk (⇑(order_hom.const (fin ((opposite.unop (opposite.op (simplex_category.mk 0))).len + 1))) 0), s := λ (n : ℕ) (f : (category_theory.simplicial_object.augmented.drop.obj (sSet.augmented.standard_simplex.obj Δ)).obj (opposite.op (simplex_category.mk n))), sSet.augmented.standard_simplex.shift f, s'_comp_ε' := _, s₀_comp_δ₁' := _, s_comp_δ₀' := _, s_comp_δ' := _, s_comp_σ' := _}
The extra degeneracy map on the Čech nerve of a split epi. It is
given on the 0
-projection by the given section of the split epi,
and by shifting the indices on the other projections.
Equations
- category_theory.arrow.augmented_cech_nerve.extra_degeneracy.s f S n = category_theory.limits.wide_pullback.lift (category_theory.limits.wide_pullback.base (λ (i : fin ((opposite.unop (opposite.op (simplex_category.mk n))).len + 1)), f.hom)) (λ (i : fin ((opposite.unop (opposite.op (simplex_category.mk (n + 1)))).len + 1)), dite (i = 0) (λ (h : i = 0), category_theory.limits.wide_pullback.base (λ (i : fin ((opposite.unop (opposite.op (simplex_category.mk n))).len + 1)), f.hom) ≫ S.section_) (λ (h : ¬i = 0), category_theory.limits.wide_pullback.π (λ (i : fin ((opposite.unop (opposite.op (simplex_category.mk n))).len + 1)), f.hom) (i.pred h))) _
The augmented Čech nerve associated to a split epimorphism has an extra degeneracy.
Equations
- category_theory.arrow.augmented_cech_nerve.extra_degeneracy f S = {s' := S.section_ ≫ category_theory.limits.wide_pullback.lift f.hom (λ (i : fin ((opposite.unop (opposite.op (simplex_category.mk 0))).len + 1)), 𝟙 ((𝟭 C).obj f.left)) _, s := λ (n : ℕ), category_theory.arrow.augmented_cech_nerve.extra_degeneracy.s f S n, s'_comp_ε' := _, s₀_comp_δ₁' := _, s_comp_δ₀' := _, s_comp_δ' := _, s_comp_σ' := _}
If C
is a preadditive category and X
is an augmented simplicial object
in C
that has an extra degeneracy, then the augmentation on the alternating
face map complex of X
is an homotopy equivalence.
Equations
- ed.homotopy_equiv = {hom := algebraic_topology.alternating_face_map_complex.ε.app X, inv := ((algebraic_topology.alternating_face_map_complex.obj (category_theory.simplicial_object.augmented.drop.obj X)).from_single₀_equiv (category_theory.simplicial_object.augmented.point.obj X)).inv_fun ed.s', homotopy_hom_inv_id := {hom := λ (i j : ℕ), dite (i + 1 = j) (λ (h : i + 1 = j), (-ed.s i) ≫ category_theory.eq_to_hom _) (λ (h : ¬i + 1 = j), 0), zero' := _, comm := _}, homotopy_inv_hom_id := homotopy.of_eq _}