Simple objects in the category of R
-modules #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We prove simple modules are exactly simple objects in the category of R
-modules.
theorem
simple_iff_is_simple_module
{R : Type u_1}
{M : Type u_2}
[ring R]
[add_comm_group M]
[module R M] :
category_theory.simple (Module.of R M) ↔ is_simple_module R M
@[protected, instance]
def
simple_of_is_simple_module
{R : Type u_1}
{M : Type u_2}
[ring R]
[add_comm_group M]
[module R M]
[is_simple_module R M] :
A simple module is a simple object in the category of modules.
@[protected, instance]
A simple object in the category of modules is a simple module.
theorem
simple_of_finrank_eq_one
{R : Type u_1}
[ring R]
{k : Type u_2}
[field k]
[algebra k R]
{V : Module R}
(h : finite_dimensional.finrank k ↥V = 1) :
Any k
-algebra module which is 1-dimensional over k
is simple.