mathlibdocumentation

linear_algebra.affine_space.basis

Affine bases and barycentric coordinates #

Suppose P is an affine space modelled on the module V over the ring k, and p : ι → P is an affine-independent family of points spanning P. Given this data, each point q : P may be written uniquely as an affine combination: q = w₀ p₀ + w₁ p₁ + ⋯ for some (finitely-supported) weights wᵢ. For each i : ι, we thus have an affine map P →ᵃ[k] k, namely q ↦ wᵢ. This family of maps is known as the family of barycentric coordinates. It is defined in this file.

The construction #

Fixing i : ι, and allowing j : ι to range over the values j ≠ i, we obtain a basis bᵢ of V defined by bᵢ j = p j -ᵥ p i. Let fᵢ j : V →ₗ[k] k be the corresponding dual basis and let fᵢ = ∑ j, fᵢ j : V →ₗ[k] k be the corresponding "sum of all coordinates" form. Then the ith barycentric coordinate of q : P is 1 - fᵢ (q -ᵥ p i).

TODO #

• Construct the affine equivalence between P and { f : ι →₀ k | f.sum = 1 }.
structure affine_basis (ι : Type u₁) (k : Type u₂) {V : Type u₃} (P : Type u₄) [ P] [ring k] [ V] :
Type (max u₁ u₄)

An affine basis is a family of affine-independent points whose span is the top subspace.

@[protected, instance]
def affine_basis.inhabited {k : Type u₂} [ring k] :

The unique point in a single-point space is the simplest example of an affine basis.

Equations
noncomputable def affine_basis.basis_of {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) (i : ι) :
basis {j // j i} k V

Given an affine basis for an affine space P, if we single out one member of the family, we obtain a linear basis for the model space V.

The linear basis correpsonding to the singled-out member i : ι is indexed by {j : ι // j ≠ i} and its jth element is points j -ᵥ points i. (See basis_of_apply.)

Equations
@[simp]
theorem affine_basis.basis_of_apply {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) (i : ι) (j : {j // j i}) :
noncomputable def affine_basis.coord {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) (i : ι) :

The ith barycentric coordinate of a point.

Equations
@[simp]
theorem affine_basis.linear_eq_sum_coords {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) (i : ι) :
@[simp]
theorem affine_basis.coord_apply_eq {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) (i : ι) :
(b.coord i) (b.points i) = 1
@[simp]
theorem affine_basis.coord_apply_neq {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) (i j : ι) (h : j i) :
(b.coord i) (b.points j) = 0
theorem affine_basis.coord_apply {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [decidable_eq ι] (i j : ι) :
(b.coord i) (b.points j) = ite (i = j) 1 0
@[simp]
theorem affine_basis.coord_apply_combination_of_mem {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) {s : finset ι} {i : ι} (hi : i s) {w : ι → k} (hw : s.sum w = 1) :
@[simp]
theorem affine_basis.coord_apply_combination_of_not_mem {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) {s : finset ι} {i : ι} (hi : i s) {w : ι → k} (hw : s.sum w = 1) :
@[simp]
theorem affine_basis.sum_coord_apply_eq_one {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [fintype ι] (q : P) :
∑ (i : ι), (b.coord i) q = 1
@[simp]
theorem affine_basis.affine_combination_coord_eq_self {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [fintype ι] (q : P) :
(λ (i : ι), (b.coord i) q) = q
theorem affine_basis.ext_elem {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [fintype ι] {q₁ q₂ : P} (h : ∀ (i : ι), (b.coord i) q₁ = (b.coord i) q₂) :
q₁ = q₂
@[simp]
theorem affine_basis.coe_coord_of_subsingleton_eq_one {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [subsingleton ι] (i : ι) :
(b.coord i) = 1
theorem affine_basis.surjective_coord {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [nontrivial ι] (i : ι) :
noncomputable def affine_basis.coords {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) :
P →ᵃ[k] ι → k

Barycentric coordinates as an affine map.

Equations
@[simp]
theorem affine_basis.coords_apply {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) (q : P) (i : ι) :
(b.coords) q i = (b.coord i) q
noncomputable def affine_basis.to_matrix {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) {ι' : Type u_1} (q : ι' → P) :
matrix ι' ι k

Given an affine basis p, and a family of points q : ι' → P, this is the matrix whose rows are the barycentric coordinates of q with respect to p.

It is an affine equivalent of basis.to_matrix.

Equations
@[simp]
theorem affine_basis.to_matrix_apply {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) {ι' : Type u_1} (q : ι' → P) (i : ι') (j : ι) :
b.to_matrix q i j = (b.coord j) (q i)
@[simp]
theorem affine_basis.to_matrix_self {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [decidable_eq ι] :
theorem affine_basis.to_matrix_row_sum_one {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [fintype ι] {ι' : Type u_1} (q : ι' → P) (i : ι') :
∑ (j : ι), b.to_matrix q i j = 1
theorem affine_basis.affine_independent_of_to_matrix_right_inv {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) {ι' : Type u_1} [fintype ι'] [fintype ι] [decidable_eq ι'] (p : ι' → P) {A : ι' k} (hA : b.to_matrix p A = 1) :

Given a family of points p : ι' → P and an affine basis b, if the matrix whose rows are the coordinates of p with respect b has a right inverse, then p is affine independent.

theorem affine_basis.affine_span_eq_top_of_to_matrix_left_inv {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) {ι' : Type u_1} [fintype ι'] [fintype ι] [decidable_eq ι] [nontrivial k] (p : ι' → P) {A : ι' k} (hA : A b.to_matrix p = 1) :

Given a family of points p : ι' → P and an affine basis b, if the matrix whose rows are the coordinates of p with respect b has a left inverse, then p spans the entire space.

@[simp]
theorem affine_basis.to_matrix_vec_mul_coords {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [fintype ι] (b₂ : k P) (x : P) :

A change of basis formula for barycentric coordinates.

theorem affine_basis.to_matrix_mul_to_matrix {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [fintype ι] (b₂ : k P) [decidable_eq ι] :
theorem affine_basis.is_unit_to_matrix {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [fintype ι] (b₂ : k P) [decidable_eq ι] :
theorem affine_basis.is_unit_to_matrix_iff {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [ring k] [ V] (b : k P) [fintype ι] [decidable_eq ι] [nontrivial k] (p : ι → P) :
@[simp]
theorem affine_basis.to_matrix_inv_vec_mul_to_matrix {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [comm_ring k] [ V] [decidable_eq ι] [fintype ι] (b b₂ : k P) (x : P) :

A change of basis formula for barycentric coordinates.

theorem affine_basis.det_smul_coords_eq_cramer_coords {ι : Type u₁} {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [comm_ring k] [ V] [decidable_eq ι] [fintype ι] (b b₂ : k P) (x : P) :
(b.to_matrix b₂.points).det (b₂.coords) x = ((b.to_matrix b₂.points).cramer) ((b.coords) x)

If we fix a background affine basis b, then for any other basis b₂, we can characterise the barycentric coordinates provided by b₂ in terms of determinants relative to b.

theorem affine_basis.exists_affine_basis (k : Type u₂) (V : Type u₃) (P : Type u₄) [ P] [field k] [ V] :
∃ (s : set P), nonempty k P)
theorem affine_basis.exists_affine_basis_of_finite_dimensional {k : Type u₂} {V : Type u₃} {P : Type u₄} [ P] [field k] [ V] {ι : Type u_1} [fintype ι] [ V] (h : = ) :