Definition of well-known power series #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we define the following power series:
-
power_series.inv_units_sub
: givenu : Rˣ
, this is the series for1 / (u - x)
. It is given by∑ n, x ^ n /ₚ u ^ (n + 1)
. -
power_series.sin
,power_series.cos
,power_series.exp
: power series for sin, cosine, and exponential functions.
The power series for 1 / (u - x)
.
Equations
- power_series.inv_units_sub u = power_series.mk (λ (n : ℕ), 1 /ₚ u ^ (n + 1))
Power series for the exponential function at zero.
Equations
- power_series.exp A = power_series.mk (λ (n : ℕ), ⇑(algebra_map ℚ A) (1 / ↑(n.factorial)))
Power series for the sine function at zero.
Equations
- power_series.sin A = power_series.mk (λ (n : ℕ), ite (even n) 0 (⇑(algebra_map ℚ A) ((-1) ^ (n / 2) / ↑(n.factorial))))
Power series for the cosine function at zero.
Equations
- power_series.cos A = power_series.mk (λ (n : ℕ), ite (even n) (⇑(algebra_map ℚ A) ((-1) ^ (n / 2) / ↑(n.factorial))) 0)
Shows that $e^{aX} * e^{bX} = e^{(a + b)X}$
Shows that $e^{x} * e^{-x} = 1$
Shows that $(e^{X})^k = e^{kX}$.
Shows that $\sum_{k = 0}^{n - 1} (e^{X})^k = \sum_{p = 0}^{\infty} \sum_{k = 0}^{n - 1} \frac{k^p}{p!}X^p$.