Definition of well-known power series #
In this file we define the following power series:
-
power_series.inv_units_sub
: givenu : Rˣ
, this is the series for1 / (u - x)
. It is given by∑ n, x ^ n /ₚ u ^ (n + 1)
. -
power_series.sin
,power_series.cos
,power_series.exp
: power series for sin, cosine, and exponential functions.
The power series for 1 / (u - x)
.
Equations
- power_series.inv_units_sub u = power_series.mk (λ (n : ℕ), 1 /ₚ u ^ (n + 1))
@[simp]
theorem
power_series.coeff_inv_units_sub
{R : Type u_1}
[ring R]
(u : Rˣ)
(n : ℕ) :
⇑(power_series.coeff R n) (power_series.inv_units_sub u) = 1 /ₚ u ^ (n + 1)
@[simp]
theorem
power_series.constant_coeff_inv_units_sub
{R : Type u_1}
[ring R]
(u : Rˣ) :
⇑(power_series.constant_coeff R) (power_series.inv_units_sub u) = 1 /ₚ u
@[simp]
@[simp]
theorem
power_series.inv_units_sub_mul_sub
{R : Type u_1}
[ring R]
(u : Rˣ) :
power_series.inv_units_sub u * (⇑(power_series.C R) ↑u - power_series.X) = 1
Power series for the exponential function at zero.
Equations
- power_series.exp A = power_series.mk (λ (n : ℕ), ⇑(algebra_map ℚ A) (1 / ↑(n.factorial)))
Power series for the sine function at zero.
Equations
- power_series.sin A = power_series.mk (λ (n : ℕ), ite (even n) 0 (⇑(algebra_map ℚ A) ((-1) ^ (n / 2) / ↑(n.factorial))))
Power series for the cosine function at zero.
Equations
- power_series.cos A = power_series.mk (λ (n : ℕ), ite (even n) (⇑(algebra_map ℚ A) ((-1) ^ (n / 2) / ↑(n.factorial))) 0)
@[simp]
theorem
power_series.coeff_exp
{A : Type u_1}
[ring A]
[algebra ℚ A]
(n : ℕ) :
⇑(power_series.coeff A n) (power_series.exp A) = ⇑(algebra_map ℚ A) (1 / ↑(n.factorial))
@[simp]
theorem
power_series.constant_coeff_exp
{A : Type u_1}
[ring A]
[algebra ℚ A] :
⇑(power_series.constant_coeff A) (power_series.exp A) = 1
@[simp]
theorem
power_series.coeff_sin_bit0
{A : Type u_1}
[ring A]
[algebra ℚ A]
(n : ℕ) :
⇑(power_series.coeff A (bit0 n)) (power_series.sin A) = 0
@[simp]
theorem
power_series.coeff_sin_bit1
{A : Type u_1}
[ring A]
[algebra ℚ A]
(n : ℕ) :
⇑(power_series.coeff A (bit1 n)) (power_series.sin A) = (-1) ^ n * ⇑(power_series.coeff A (bit1 n)) (power_series.exp A)
@[simp]
theorem
power_series.coeff_cos_bit0
{A : Type u_1}
[ring A]
[algebra ℚ A]
(n : ℕ) :
⇑(power_series.coeff A (bit0 n)) (power_series.cos A) = (-1) ^ n * ⇑(power_series.coeff A (bit0 n)) (power_series.exp A)
@[simp]
theorem
power_series.coeff_cos_bit1
{A : Type u_1}
[ring A]
[algebra ℚ A]
(n : ℕ) :
⇑(power_series.coeff A (bit1 n)) (power_series.cos A) = 0
@[simp]
theorem
power_series.map_exp
{A : Type u_1}
{A' : Type u_2}
[ring A]
[ring A']
[algebra ℚ A]
[algebra ℚ A']
(f : A →+* A') :
⇑(power_series.map f) (power_series.exp A) = power_series.exp A'
@[simp]
theorem
power_series.map_sin
{A : Type u_1}
{A' : Type u_2}
[ring A]
[ring A']
[algebra ℚ A]
[algebra ℚ A']
(f : A →+* A') :
⇑(power_series.map f) (power_series.sin A) = power_series.sin A'
@[simp]
theorem
power_series.map_cos
{A : Type u_1}
{A' : Type u_2}
[ring A]
[ring A']
[algebra ℚ A]
[algebra ℚ A']
(f : A →+* A') :
⇑(power_series.map f) (power_series.cos A) = power_series.cos A'
theorem
power_series.exp_mul_exp_eq_exp_add
{A : Type u_1}
[comm_ring A]
[algebra ℚ A]
(a b : A) :
⇑(power_series.rescale a) (power_series.exp A) * ⇑(power_series.rescale b) (power_series.exp A) = ⇑(power_series.rescale (a + b)) (power_series.exp A)
Shows that $e^{aX} * e^{bX} = e^{(a + b)X}$
Shows that $e^{x} * e^{-x} = 1$
theorem
power_series.exp_pow_eq_rescale_exp
{A : Type u_1}
[comm_ring A]
[algebra ℚ A]
(k : ℕ) :
power_series.exp A ^ k = ⇑(power_series.rescale ↑k) (power_series.exp A)
Shows that $(e^{X})^k = e^{kX}$.
theorem
power_series.exp_pow_sum
{A : Type u_1}
[comm_ring A]
[algebra ℚ A]
(n : ℕ) :
(finset.range n).sum (λ (k : ℕ), power_series.exp A ^ k) = power_series.mk (λ (p : ℕ), (finset.range n).sum (λ (k : ℕ), ↑k ^ p * ⇑(algebra_map ℚ A) (↑(p.factorial))⁻¹))
Shows that $\sum_{k = 0}^{n - 1} (e^{X})^k = \sum_{p = 0}^{\infty} \sum_{k = 0}^{n - 1} \frac{k^p}{p!}X^p$.