Open sets #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Summary #
We define the subtype of open sets in a topological space.
Main Definitions #
Bundled open sets #
opens α
is the type of open subsets of a topological spaceα
.opens.is_basis
is a predicate saying that a set ofopens
s form a topological basis.opens.comap
: preimage of an open set under a continuous map as aframe_hom
.homeomorph.opens_congr
: order-preserving equivalence between open sets in the domain and the codomain of a homeomorphism.
Bundled open neighborhoods #
open_nhds_of x
is the type of open subsets of a topological spaceα
containingx : α
.open_nhds_of.comap f x U
is the preimage of open neighborhoodU
off x
underf : C(α, β)
.
Main results #
We define order structures on both opens α
(complete_structure
, frame
) and open_nhds_of x
(order_top
, distrib_lattice
).
The type of open subsets of a topological space.
Instances for topological_space.opens
- topological_space.opens.has_sizeof_inst
- topological_space.opens.set_like
- topological_space.opens.is_open.can_lift
- topological_space.opens.complete_lattice
- topological_space.opens.inhabited
- topological_space.opens.order.frame
- topological_space.opens.finite
- open_subgroup.has_coe_opens
- open_add_subgroup.has_coe_opens
Equations
- topological_space.opens.set_like = {coe := topological_space.opens.carrier _inst_1, coe_injective' := _}
Equations
See Note [custom simps projection].
Equations
The interior of a set, as an element of opens
.
The galois coinsertion between sets and opens.
Equations
- topological_space.opens.complete_lattice = topological_space.opens.gi.lift_complete_lattice.copy (λ (U V : topological_space.opens α), ↑U ⊆ ↑V) topological_space.opens.complete_lattice._proof_1 {carrier := set.univ α, is_open' := _} topological_space.opens.complete_lattice._proof_2 {carrier := ∅, is_open' := _} topological_space.opens.complete_lattice._proof_3 (λ (U V : topological_space.opens α), {carrier := ↑U ∪ ↑V, is_open' := _}) topological_space.opens.complete_lattice._proof_5 (λ (U V : topological_space.opens α), {carrier := ↑U ∩ ↑V, is_open' := _}) topological_space.opens.complete_lattice._proof_7 (λ (S : set (topological_space.opens α)), {carrier := ⋃ (s : topological_space.opens α) (H : s ∈ S), ↑s, is_open' := _}) topological_space.opens.complete_lattice._proof_9 complete_lattice.Inf topological_space.opens.complete_lattice._proof_10
Equations
Equations
- topological_space.opens.order.frame = {sup := complete_lattice.sup topological_space.opens.complete_lattice, le := complete_lattice.le topological_space.opens.complete_lattice, lt := complete_lattice.lt topological_space.opens.complete_lattice, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := complete_lattice.inf topological_space.opens.complete_lattice, inf_le_left := _, inf_le_right := _, le_inf := _, Sup := has_Sup.Sup (conditionally_complete_lattice.to_has_Sup (topological_space.opens α)), le_Sup := _, Sup_le := _, Inf := complete_lattice.Inf topological_space.opens.complete_lattice, Inf_le := _, le_Inf := _, top := complete_lattice.top topological_space.opens.complete_lattice, bot := complete_lattice.bot topological_space.opens.complete_lattice, le_top := _, bot_le := _, inf_Sup_le_supr_inf := _}
An open set in the indiscrete topology is either empty or the whole space.
A set of opens α
is a basis if the set of corresponding sets is a topological basis.
Equations
If α
has a basis consisting of compact opens, then an open set in α
is compact open iff
it is a finite union of some elements in the basis
The preimage of an open set, as an open set.
Equations
- topological_space.opens.comap f = {to_inf_top_hom := {to_inf_hom := {to_fun := λ (s : topological_space.opens β), {carrier := ⇑f ⁻¹' ↑s, is_open' := _}, map_inf' := _}, map_top' := _}, map_Sup' := _}
A homeomorphism induces an order-preserving equivalence on open sets, by taking comaps.
Equations
- f.opens_congr = {to_equiv := {to_fun := ⇑(topological_space.opens.comap f.symm.to_continuous_map), inv_fun := ⇑(topological_space.opens.comap f.to_continuous_map), left_inv := _, right_inv := _}, map_rel_iff' := _}
- to_opens : topological_space.opens α
- mem' : x ∈ self.to_opens.carrier
The open neighborhoods of a point. See also opens
or nhds
.
Instances for topological_space.open_nhds_of
- topological_space.open_nhds_of.has_sizeof_inst
- topological_space.open_nhds_of.set_like
- topological_space.open_nhds_of.can_lift_set
- topological_space.open_nhds_of.order_top
- topological_space.open_nhds_of.inhabited
- topological_space.open_nhds_of.has_inf
- topological_space.open_nhds_of.has_sup
- topological_space.open_nhds_of.distrib_lattice
Equations
- topological_space.open_nhds_of.set_like = {coe := λ (U : topological_space.open_nhds_of x), ↑(U.to_opens), coe_injective' := _}
Equations
Equations
Equations
- topological_space.open_nhds_of.distrib_lattice = function.injective.distrib_lattice topological_space.open_nhds_of.to_opens topological_space.open_nhds_of.to_opens_injective topological_space.open_nhds_of.distrib_lattice._proof_1 topological_space.open_nhds_of.distrib_lattice._proof_2
Preimage of an open neighborhood of f x
under a continuous map f
as a lattice_hom
.
Equations
- topological_space.open_nhds_of.comap f x = {to_sup_hom := {to_fun := λ (U : topological_space.open_nhds_of (⇑f x)), {to_opens := ⇑(topological_space.opens.comap f) U.to_opens, mem' := _}, map_sup' := _}, map_inf' := _}