I-filtrations of modules #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains the definitions and basic results around (stable) I-filtrations of modules.
Main results #
ideal.filtration: AnI-filtration on the moduleMis a sequence of decreasing submodulesN isuch thatI • N ≤ I (i + 1). Note that we do not require the filtration to start from⊤.ideal.filtration.stable: AnI-filtration is stable ifI • (N i) = N (i + 1)for large enoughi.ideal.filtration.submodule: The associated module⨁ Nᵢof a filtration, implemented as a submodule ofM[X].ideal.filtration.submodule_fg_iff_stable: IfF.N iare all finitely generated, thenF.stableiffF.submodule.fg.ideal.filtration.stable.of_le: In a finite module over a noetherian ring, ifF' ≤ F, thenF.stable → F'.stable.ideal.exists_pow_inf_eq_pow_smul: Artin-Rees lemma. givenN ≤ M, there exists aksuch thatIⁿM ⊓ N = Iⁿ⁻ᵏ(IᵏM ⊓ N)for alln ≥ k.ideal.infi_pow_eq_bot_of_local_ring: Krull's intersection theorem (⨅ i, I ^ i = ⊥) for noetherian local rings.ideal.infi_pow_eq_bot_of_is_domain: Krull's intersection theorem (⨅ i, I ^ i = ⊥) for noetherian domains.
- N : ℕ → submodule R M
- mono : ∀ (i : ℕ), self.N (i + 1) ≤ self.N i
- smul_le : ∀ (i : ℕ), I • self.N i ≤ self.N (i + 1)
An I-filtration on the module M is a sequence of decreasing submodules N i such that
I • (N i) ≤ N (i + 1). Note that we do not require the filtration to start from ⊤.
Instances for ideal.filtration
The trivial I-filtration of N.
The sup of two I.filtrations is an I.filtration.
The Sup of a family of I.filtrations is an I.filtration.
Equations
- ideal.filtration.has_Sup = {Sup := λ (S : set (I.filtration M)), {N := has_Sup.Sup (ideal.filtration.N '' S), mono := _, smul_le := _}}
The inf of two I.filtrations is an I.filtration.
The Inf of a family of I.filtrations is an I.filtration.
Equations
- ideal.filtration.has_Inf = {Inf := λ (S : set (I.filtration M)), {N := has_Inf.Inf (ideal.filtration.N '' S), mono := _, smul_le := _}}
Equations
Equations
Equations
- ideal.filtration.complete_lattice = function.injective.complete_lattice ideal.filtration.N ideal.filtration.ext ideal.filtration.sup_N ideal.filtration.inf_N ideal.filtration.complete_lattice._proof_1 ideal.filtration.complete_lattice._proof_2 ideal.filtration.top_N ideal.filtration.bot_N
Equations
The trivial stable I-filtration of N.
The R[IX]-submodule of M[X] associated with an I-filtration.
ideal.filtration.submodule as an inf_hom
Equations
- ideal.filtration.submodule_inf_hom M I = {to_fun := ideal.filtration.submodule I, map_inf' := _}
If the components of a filtration are finitely generated, then the filtration is stable iff its associated submodule of is finitely generated.
Krull's intersection theorem for noetherian local rings.