Lemmas about commuting elements in a monoid_with_zero
or a group_with_zero
. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
theorem
ring.mul_inverse_rev'
{M₀ : Type u_2}
[monoid_with_zero M₀]
{a b : M₀}
(h : commute a b) :
ring.inverse (a * b) = ring.inverse b * ring.inverse a
theorem
ring.mul_inverse_rev
{M₀ : Type u_1}
[comm_monoid_with_zero M₀]
(a b : M₀) :
ring.inverse (a * b) = ring.inverse b * ring.inverse a
theorem
commute.ring_inverse_ring_inverse
{M₀ : Type u_2}
[monoid_with_zero M₀]
{a b : M₀}
(h : commute a b) :
commute (ring.inverse a) (ring.inverse b)
@[simp]
@[simp]
@[simp]
@[simp]
theorem
commute.div_right
{G₀ : Type u_3}
[group_with_zero G₀]
{a b c : G₀}
(hab : commute a b)
(hac : commute a c) :
@[simp]
theorem
commute.div_left
{G₀ : Type u_3}
[group_with_zero G₀]
{a b c : G₀}
(hac : commute a c)
(hbc : commute b c) :