Simple groups #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines is_simple_group G
, a class indicating that a group has exactly two normal
subgroups.
Main definitions #
is_simple_group G
, a class indicating that a group has exactly two normal subgroups.
Tags #
subgroup, subgroups
@[instance]
@[instance]
theorem
add_subgroup.normal.eq_bot_or_eq_top
{G : Type u_1}
[add_group G]
[is_simple_add_group G]
{H : add_subgroup G}
(Hn : H.normal) :
@[protected, instance]
def
is_simple_add_group.subgroup.is_simple_order
{C : Type u_1}
[add_comm_group C]
[is_simple_add_group C] :
@[protected, instance]
theorem
is_simple_add_group.is_simple_add_group_of_surjective
{G : Type u_1}
[add_group G]
{H : Type u_2}
[add_group H]
[is_simple_add_group G]
[nontrivial H]
(f : G →+ H)
(hf : function.surjective ⇑f) :
theorem
is_simple_group.is_simple_group_of_surjective
{G : Type u_1}
[group G]
{H : Type u_2}
[group H]
[is_simple_group G]
[nontrivial H]
(f : G →* H)
(hf : function.surjective ⇑f) :