THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4. The unit isomorphism of the Dold-Kan equivalence
In order to construct the unit isomorphism of the Dold-Kan equivalence,
we first construct natural transformations
Γ₂N₁.nat_trans : N₁ ⋙ Γ₂ ⟶ to_karoubi (simplicial_object C)
and
Γ₂N₂.nat_trans : N₂ ⋙ Γ₂ ⟶ 𝟭 (simplicial_object C)
.
It is then shown that Γ₂N₂.nat_trans
is an isomorphism by using
that it becomes an isomorphism after the application of the functor
N₂ : karoubi (simplicial_object C) ⥤ karoubi (chain_complex C ℕ)
which reflects isomorphisms.
(See equivalence.lean
for the general strategy of proof of the Dold-Kan equivalence.)
The natural transformation N₁ ⋙ Γ₂ ⟶ to_karoubi (simplicial_object C)
.
Equations
- algebraic_topology.dold_kan.Γ₂N₁.nat_trans = {app := λ (X : category_theory.simplicial_object C), {f := {app := λ (Δ : simplex_categoryᵒᵖ), (algebraic_topology.dold_kan.Γ₀.splitting (algebraic_topology.alternating_face_map_complex.obj X)).desc Δ (λ (A : simplicial_object.splitting.index_set Δ), algebraic_topology.dold_kan.P_infty.f (opposite.unop A.fst).len ≫ X.map A.e.op), naturality' := _}, comm := _}, naturality' := _}
Instances for algebraic_topology.dold_kan.Γ₂N₁.nat_trans
The compatibility isomorphism relating N₂ ⋙ Γ₂
and N₁ ⋙ Γ₂
.
Equations
- algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂ = category_theory.eq_to_iso algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂._proof_1
The natural transformation N₂ ⋙ Γ₂ ⟶ 𝟭 (simplicial_object C)
.
Equations
- algebraic_topology.dold_kan.Γ₂N₂.nat_trans = ((category_theory.whiskering_left (category_theory.simplicial_object C) (category_theory.idempotents.karoubi (category_theory.simplicial_object C)) (category_theory.idempotents.karoubi (category_theory.simplicial_object C))).obj (category_theory.idempotents.to_karoubi (category_theory.simplicial_object C))).preimage (algebraic_topology.dold_kan.compatibility_Γ₂N₁_Γ₂N₂.hom ≫ algebraic_topology.dold_kan.Γ₂N₁.nat_trans)
Instances for algebraic_topology.dold_kan.Γ₂N₂.nat_trans
The unit isomorphism of the Dold-Kan equivalence.
The natural isomorphism to_karoubi (simplicial_object C) ≅ N₁ ⋙ Γ₂
.