Ordered monoid structures on the order dual. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[protected, instance]
def
order_dual.contravariant_class_mul_le
{α : Type u}
[has_le α]
[has_mul α]
[c : contravariant_class α α has_mul.mul has_le.le] :
@[protected, instance]
def
order_dual.contravariant_class_add_le
{α : Type u}
[has_le α]
[has_add α]
[c : contravariant_class α α has_add.add has_le.le] :
@[protected, instance]
def
order_dual.covariant_class_mul_le
{α : Type u}
[has_le α]
[has_mul α]
[c : covariant_class α α has_mul.mul has_le.le] :
@[protected, instance]
def
order_dual.covariant_class_add_le
{α : Type u}
[has_le α]
[has_add α]
[c : covariant_class α α has_add.add has_le.le] :
@[protected, instance]
def
order_dual.contravariant_class_swap_add_le
{α : Type u}
[has_le α]
[has_add α]
[c : contravariant_class α α (function.swap has_add.add) has_le.le] :
@[protected, instance]
def
order_dual.contravariant_class_swap_mul_le
{α : Type u}
[has_le α]
[has_mul α]
[c : contravariant_class α α (function.swap has_mul.mul) has_le.le] :
@[protected, instance]
def
order_dual.covariant_class_swap_add_le
{α : Type u}
[has_le α]
[has_add α]
[c : covariant_class α α (function.swap has_add.add) has_le.le] :
@[protected, instance]
def
order_dual.covariant_class_swap_mul_le
{α : Type u}
[has_le α]
[has_mul α]
[c : covariant_class α α (function.swap has_mul.mul) has_le.le] :
@[protected, instance]
def
order_dual.contravariant_class_mul_lt
{α : Type u}
[has_lt α]
[has_mul α]
[c : contravariant_class α α has_mul.mul has_lt.lt] :
@[protected, instance]
def
order_dual.contravariant_class_add_lt
{α : Type u}
[has_lt α]
[has_add α]
[c : contravariant_class α α has_add.add has_lt.lt] :
@[protected, instance]
def
order_dual.covariant_class_add_lt
{α : Type u}
[has_lt α]
[has_add α]
[c : covariant_class α α has_add.add has_lt.lt] :
@[protected, instance]
def
order_dual.covariant_class_mul_lt
{α : Type u}
[has_lt α]
[has_mul α]
[c : covariant_class α α has_mul.mul has_lt.lt] :
@[protected, instance]
def
order_dual.contravariant_class_swap_mul_lt
{α : Type u}
[has_lt α]
[has_mul α]
[c : contravariant_class α α (function.swap has_mul.mul) has_lt.lt] :
@[protected, instance]
def
order_dual.contravariant_class_swap_add_lt
{α : Type u}
[has_lt α]
[has_add α]
[c : contravariant_class α α (function.swap has_add.add) has_lt.lt] :
@[protected, instance]
def
order_dual.covariant_class_swap_mul_lt
{α : Type u}
[has_lt α]
[has_mul α]
[c : covariant_class α α (function.swap has_mul.mul) has_lt.lt] :
@[protected, instance]
def
order_dual.covariant_class_swap_add_lt
{α : Type u}
[has_lt α]
[has_add α]
[c : covariant_class α α (function.swap has_add.add) has_lt.lt] :
@[protected, instance]
Equations
- order_dual.ordered_add_comm_monoid = {add := add_comm_monoid.add order_dual.add_comm_monoid, add_assoc := _, zero := add_comm_monoid.zero order_dual.add_comm_monoid, zero_add := _, add_zero := _, nsmul := add_comm_monoid.nsmul order_dual.add_comm_monoid, nsmul_zero' := _, nsmul_succ' := _, add_comm := _, le := partial_order.le (order_dual.partial_order α), lt := partial_order.lt (order_dual.partial_order α), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _}
@[protected, instance]
Equations
- order_dual.ordered_comm_monoid = {mul := comm_monoid.mul order_dual.comm_monoid, mul_assoc := _, one := comm_monoid.one order_dual.comm_monoid, one_mul := _, mul_one := _, npow := comm_monoid.npow order_dual.comm_monoid, npow_zero' := _, npow_succ' := _, mul_comm := _, le := partial_order.le (order_dual.partial_order α), lt := partial_order.lt (order_dual.partial_order α), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _}
@[protected, instance]
@[protected, instance]
@[protected, instance]
Equations
- order_dual.ordered_cancel_comm_monoid = {mul := ordered_comm_monoid.mul order_dual.ordered_comm_monoid, mul_assoc := _, one := ordered_comm_monoid.one order_dual.ordered_comm_monoid, one_mul := _, mul_one := _, npow := ordered_comm_monoid.npow order_dual.ordered_comm_monoid, npow_zero' := _, npow_succ' := _, mul_comm := _, le := ordered_comm_monoid.le order_dual.ordered_comm_monoid, lt := ordered_comm_monoid.lt order_dual.ordered_comm_monoid, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _, le_of_mul_le_mul_left := _}
@[protected, instance]
Equations
- order_dual.ordered_cancel_add_comm_monoid = {add := ordered_add_comm_monoid.add order_dual.ordered_add_comm_monoid, add_assoc := _, zero := ordered_add_comm_monoid.zero order_dual.ordered_add_comm_monoid, zero_add := _, add_zero := _, nsmul := ordered_add_comm_monoid.nsmul order_dual.ordered_add_comm_monoid, nsmul_zero' := _, nsmul_succ' := _, add_comm := _, le := ordered_add_comm_monoid.le order_dual.ordered_add_comm_monoid, lt := ordered_add_comm_monoid.lt order_dual.ordered_add_comm_monoid, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _, le_of_add_le_add_left := _}
@[protected, instance]
def
order_dual.linear_ordered_cancel_comm_monoid
{α : Type u}
[linear_ordered_cancel_comm_monoid α] :
Equations
- order_dual.linear_ordered_cancel_comm_monoid = {mul := ordered_cancel_comm_monoid.mul order_dual.ordered_cancel_comm_monoid, mul_assoc := _, one := ordered_cancel_comm_monoid.one order_dual.ordered_cancel_comm_monoid, one_mul := _, mul_one := _, npow := ordered_cancel_comm_monoid.npow order_dual.ordered_cancel_comm_monoid, npow_zero' := _, npow_succ' := _, mul_comm := _, le := linear_order.le (order_dual.linear_order α), lt := linear_order.lt (order_dual.linear_order α), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, mul_le_mul_left := _, le_of_mul_le_mul_left := _, le_total := _, decidable_le := linear_order.decidable_le (order_dual.linear_order α), decidable_eq := linear_order.decidable_eq (order_dual.linear_order α), decidable_lt := linear_order.decidable_lt (order_dual.linear_order α), max := linear_order.max (order_dual.linear_order α), max_def := _, min := linear_order.min (order_dual.linear_order α), min_def := _}
@[protected, instance]
def
order_dual.linear_ordered_cancel_add_comm_monoid
{α : Type u}
[linear_ordered_cancel_add_comm_monoid α] :
Equations
- order_dual.linear_ordered_cancel_add_comm_monoid = {add := ordered_cancel_add_comm_monoid.add order_dual.ordered_cancel_add_comm_monoid, add_assoc := _, zero := ordered_cancel_add_comm_monoid.zero order_dual.ordered_cancel_add_comm_monoid, zero_add := _, add_zero := _, nsmul := ordered_cancel_add_comm_monoid.nsmul order_dual.ordered_cancel_add_comm_monoid, nsmul_zero' := _, nsmul_succ' := _, add_comm := _, le := linear_order.le (order_dual.linear_order α), lt := linear_order.lt (order_dual.linear_order α), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _, le_of_add_le_add_left := _, le_total := _, decidable_le := linear_order.decidable_le (order_dual.linear_order α), decidable_eq := linear_order.decidable_eq (order_dual.linear_order α), decidable_lt := linear_order.decidable_lt (order_dual.linear_order α), max := linear_order.max (order_dual.linear_order α), max_def := _, min := linear_order.min (order_dual.linear_order α), min_def := _}
@[protected, instance]
Equations
- order_dual.linear_ordered_add_comm_monoid = {le := linear_order.le (order_dual.linear_order α), lt := linear_order.lt (order_dual.linear_order α), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_order.decidable_le (order_dual.linear_order α), decidable_eq := linear_order.decidable_eq (order_dual.linear_order α), decidable_lt := linear_order.decidable_lt (order_dual.linear_order α), max := linear_order.max (order_dual.linear_order α), max_def := _, min := linear_order.min (order_dual.linear_order α), min_def := _, add := ordered_add_comm_monoid.add order_dual.ordered_add_comm_monoid, add_assoc := _, zero := ordered_add_comm_monoid.zero order_dual.ordered_add_comm_monoid, zero_add := _, add_zero := _, nsmul := ordered_add_comm_monoid.nsmul order_dual.ordered_add_comm_monoid, nsmul_zero' := _, nsmul_succ' := _, add_comm := _, add_le_add_left := _}
@[protected, instance]
Equations
- order_dual.linear_ordered_comm_monoid = {le := linear_order.le (order_dual.linear_order α), lt := linear_order.lt (order_dual.linear_order α), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_total := _, decidable_le := linear_order.decidable_le (order_dual.linear_order α), decidable_eq := linear_order.decidable_eq (order_dual.linear_order α), decidable_lt := linear_order.decidable_lt (order_dual.linear_order α), max := linear_order.max (order_dual.linear_order α), max_def := _, min := linear_order.min (order_dual.linear_order α), min_def := _, mul := ordered_comm_monoid.mul order_dual.ordered_comm_monoid, mul_assoc := _, one := ordered_comm_monoid.one order_dual.ordered_comm_monoid, one_mul := _, mul_one := _, npow := ordered_comm_monoid.npow order_dual.ordered_comm_monoid, npow_zero' := _, npow_succ' := _, mul_comm := _, mul_le_mul_left := _}