mathlib documentation

algebra.add_torsor

Torsors of additive group actions #

This file defines torsors of additive group actions.

Notations #

The group elements are referred to as acting on points. This file defines the notation +ᵥ for adding a group element to a point and -ᵥ for subtracting two points to produce a group element.

Implementation notes #

Affine spaces are the motivating example of torsors of additive group actions. It may be appropriate to refactor in terms of the general definition of group actions, via to_additive, when there is a use for multiplicative torsors (currently mathlib only develops the theory of group actions for multiplicative group actions).

Notations #

References #

@[class]
structure has_vsub (G : out_param (Type u_1)) (P : Type u_2) :
Type (max u_1 u_2)
  • vsub : P → P → G

Type class for the -ᵥ notation.

Instances
@[class]
structure add_torsor (G : out_param (Type u_1)) (P : Type u_2) [out_param (add_group G)] :
Type (max u_1 u_2)

An add_torsor G P gives a structure to the nonempty type P, acted on by an add_group G with a transitive and free action given by the +ᵥ operation and a corresponding subtraction given by the -ᵥ operation. In the case of a vector space, it is an affine space.

Instances
@[simp]
theorem vsub_eq_sub {G : Type u_1} [add_group G] (g1 g2 : G) :
g1 -ᵥ g2 = g1 - g2

Simplify subtraction for a torsor for an add_group G over itself.

@[simp]
theorem vsub_vadd {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p1 p2 : P) :
p1 -ᵥ p2 +ᵥ p2 = p1

Adding the result of subtracting from another point produces that point.

@[simp]
theorem vadd_vsub {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (g : G) (p : P) :
g +ᵥ p -ᵥ p = g

Adding a group element then subtracting the original point produces that group element.

theorem vadd_right_cancel {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {g1 g2 : G} (p : P) (h : g1 +ᵥ p = g2 +ᵥ p) :
g1 = g2

If the same point added to two group elements produces equal results, those group elements are equal.

@[simp]
theorem vadd_right_cancel_iff {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {g1 g2 : G} (p : P) :
g1 +ᵥ p = g2 +ᵥ p g1 = g2
theorem vadd_right_injective {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p : P) :
function.injective (λ (_x : G), _x +ᵥ p)

Adding a group element to the point p is an injective function.

theorem vadd_vsub_assoc {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (g : G) (p1 p2 : P) :
g +ᵥ p1 -ᵥ p2 = g + (p1 -ᵥ p2)

Adding a group element to a point, then subtracting another point, produces the same result as subtracting the points then adding the group element.

@[simp]
theorem vsub_self {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p : P) :
p -ᵥ p = 0

Subtracting a point from itself produces 0.

theorem eq_of_vsub_eq_zero {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {p1 p2 : P} (h : p1 -ᵥ p2 = 0) :
p1 = p2

If subtracting two points produces 0, they are equal.

@[simp]
theorem vsub_eq_zero_iff_eq {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {p1 p2 : P} :
p1 -ᵥ p2 = 0 p1 = p2

Subtracting two points produces 0 if and only if they are equal.

@[simp]
theorem vsub_add_vsub_cancel {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p1 p2 p3 : P) :
p1 -ᵥ p2 + (p2 -ᵥ p3) = p1 -ᵥ p3

Cancellation adding the results of two subtractions.

@[simp]
theorem neg_vsub_eq_vsub_rev {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p1 p2 : P) :
-(p1 -ᵥ p2) = p2 -ᵥ p1

Subtracting two points in the reverse order produces the negation of subtracting them.

theorem vsub_vadd_eq_vsub_sub {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p1 p2 : P) (g : G) :
p1 -ᵥ (g +ᵥ p2) = p1 -ᵥ p2 - g

Subtracting the result of adding a group element produces the same result as subtracting the points and subtracting that group element.

@[simp]
theorem vsub_sub_vsub_cancel_right {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p1 p2 p3 : P) :
p1 -ᵥ p3 - (p2 -ᵥ p3) = p1 -ᵥ p2

Cancellation subtracting the results of two subtractions.

theorem eq_vadd_iff_vsub_eq {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p1 : P) (g : G) (p2 : P) :
p1 = g +ᵥ p2 p1 -ᵥ p2 = g

Convert between an equality with adding a group element to a point and an equality of a subtraction of two points with a group element.

theorem vadd_eq_vadd_iff_neg_add_eq_vsub {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {v₁ v₂ : G} {p₁ p₂ : P} :
v₁ +ᵥ p₁ = v₂ +ᵥ p₂ -v₁ + v₂ = p₁ -ᵥ p₂
@[instance]
def set.has_vsub {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] :
has_vsub (set G) (set P)
Equations
@[simp]
theorem set.vsub_empty {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (s : set P) :
@[simp]
theorem set.empty_vsub {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (s : set P) :
@[simp]
theorem set.singleton_vsub {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (s : set P) (p : P) :
@[simp]
theorem set.vsub_singleton {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (s : set P) (p : P) :
s -ᵥ {p} = (λ (_x : P), _x -ᵥ p) '' s
@[simp]
theorem set.singleton_vsub_self {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p : P) :
{p} -ᵥ {p} = {0}
theorem set.finite.vsub {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {s t : set P} (hs : s.finite) (ht : t.finite) :
(s -ᵥ t).finite

vsub of a finite set is finite.

theorem set.vsub_mem_vsub {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {s t : set P} {ps pt : P} (hs : ps s) (ht : pt t) :
ps -ᵥ pt s -ᵥ t

Each pairwise difference is in the vsub set.

theorem set.vsub_subset_vsub {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {s t s' t' : set P} (hs : s s') (ht : t t') :
s -ᵥ t s' -ᵥ t'

s -ᵥ t is monotone in both arguments.

theorem set.vsub_self_mono {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {s t : set P} (h : s t) :
s -ᵥ s t -ᵥ t
theorem set.vsub_subset_iff {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {s t : set P} {u : set G} :
s -ᵥ t u ∀ (x : P), x s∀ (y : P), y tx -ᵥ y u
@[instance]
def set.add_action {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] :
Equations
theorem set.vadd_subset_vadd {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {s s' : set G} {t t' : set P} (hs : s s') (ht : t t') :
s +ᵥ t s' +ᵥ t'
@[simp]
theorem set.vadd_singleton {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (s : set G) (p : P) :
s +ᵥ {p} = (λ (_x : G), _x +ᵥ p) '' s
@[simp]
theorem set.singleton_vadd {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (v : G) (s : set P) :
theorem set.finite.vadd {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {s : set G} {t : set P} (hs : s.finite) (ht : t.finite) :
(s +ᵥ t).finite
@[simp]
theorem vadd_vsub_vadd_cancel_right {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (v₁ v₂ : G) (p : P) :
v₁ +ᵥ p -ᵥ (v₂ +ᵥ p) = v₁ - v₂
theorem vsub_left_cancel {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {p1 p2 p : P} (h : p1 -ᵥ p = p2 -ᵥ p) :
p1 = p2

If the same point subtracted from two points produces equal results, those points are equal.

@[simp]
theorem vsub_left_cancel_iff {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {p1 p2 p : P} :
p1 -ᵥ p = p2 -ᵥ p p1 = p2

The same point subtracted from two points produces equal results if and only if those points are equal.

theorem vsub_left_injective {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p : P) :
function.injective (λ (_x : P), _x -ᵥ p)

Subtracting the point p is an injective function.

theorem vsub_right_cancel {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {p1 p2 p : P} (h : p -ᵥ p1 = p -ᵥ p2) :
p1 = p2

If subtracting two points from the same point produces equal results, those points are equal.

@[simp]
theorem vsub_right_cancel_iff {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] {p1 p2 p : P} :
p -ᵥ p1 = p -ᵥ p2 p1 = p2

Subtracting two points from the same point produces equal results if and only if those points are equal.

theorem vsub_right_injective {G : Type u_1} {P : Type u_2} [add_group G] [T : affine_space G P] (p : P) :

Subtracting a point from the point p is an injective function.

@[simp]
theorem vsub_sub_vsub_cancel_left {G : Type u_1} {P : Type u_2} [add_comm_group G] [affine_space G P] (p1 p2 p3 : P) :
p3 -ᵥ p2 - (p3 -ᵥ p1) = p1 -ᵥ p2

Cancellation subtracting the results of two subtractions.

@[simp]
theorem vadd_vsub_vadd_cancel_left {G : Type u_1} {P : Type u_2} [add_comm_group G] [affine_space G P] (v : G) (p1 p2 : P) :
v +ᵥ p1 -ᵥ (v +ᵥ p2) = p1 -ᵥ p2
theorem vsub_vadd_comm {G : Type u_1} {P : Type u_2} [add_comm_group G] [affine_space G P] (p1 p2 p3 : P) :
p1 -ᵥ p2 +ᵥ p3 = p3 -ᵥ p2 +ᵥ p1
theorem vadd_eq_vadd_iff_sub_eq_vsub {G : Type u_1} {P : Type u_2} [add_comm_group G] [affine_space G P] {v₁ v₂ : G} {p₁ p₂ : P} :
v₁ +ᵥ p₁ = v₂ +ᵥ p₂ v₂ - v₁ = p₁ -ᵥ p₂
theorem vsub_sub_vsub_comm {G : Type u_1} {P : Type u_2} [add_comm_group G] [affine_space G P] (p₁ p₂ p₃ p₄ : P) :
p₁ -ᵥ p₂ - (p₃ -ᵥ p₄) = p₁ -ᵥ p₃ - (p₂ -ᵥ p₄)
@[instance]
def prod.add_torsor {G : Type u_1} {P : Type u_2} {G' : Type u_3} {P' : Type u_4} [add_group G] [add_group G'] [affine_space G P] [affine_space G' P'] :
affine_space (G × G') (P × P')
Equations
@[simp]
theorem prod.fst_vadd {G : Type u_1} {P : Type u_2} {G' : Type u_3} {P' : Type u_4} [add_group G] [add_group G'] [affine_space G P] [affine_space G' P'] (v : G × G') (p : P × P') :
(v +ᵥ p).fst = v.fst +ᵥ p.fst
@[simp]
theorem prod.snd_vadd {G : Type u_1} {P : Type u_2} {G' : Type u_3} {P' : Type u_4} [add_group G] [add_group G'] [affine_space G P] [affine_space G' P'] (v : G × G') (p : P × P') :
(v +ᵥ p).snd = v.snd +ᵥ p.snd
@[simp]
theorem prod.mk_vadd_mk {G : Type u_1} {P : Type u_2} {G' : Type u_3} {P' : Type u_4} [add_group G] [add_group G'] [affine_space G P] [affine_space G' P'] (v : G) (v' : G') (p : P) (p' : P') :
(v, v') +ᵥ (p, p') = (v +ᵥ p, v' +ᵥ p')
@[simp]
theorem prod.fst_vsub {G : Type u_1} {P : Type u_2} {G' : Type u_3} {P' : Type u_4} [add_group G] [add_group G'] [affine_space G P] [affine_space G' P'] (p₁ p₂ : P × P') :
(p₁ -ᵥ p₂).fst = p₁.fst -ᵥ p₂.fst
@[simp]
theorem prod.snd_vsub {G : Type u_1} {P : Type u_2} {G' : Type u_3} {P' : Type u_4} [add_group G] [add_group G'] [affine_space G P] [affine_space G' P'] (p₁ p₂ : P × P') :
(p₁ -ᵥ p₂).snd = p₁.snd -ᵥ p₂.snd
@[simp]
theorem prod.mk_vsub_mk {G : Type u_1} {P : Type u_2} {G' : Type u_3} {P' : Type u_4} [add_group G] [add_group G'] [affine_space G P] [affine_space G' P'] (p₁ p₂ : P) (p₁' p₂' : P') :
(p₁, p₁') -ᵥ (p₂, p₂') = (p₁ -ᵥ p₂, p₁' -ᵥ p₂')
@[instance]
def pi.add_torsor {I : Type u} {fg : I → Type v} [Π (i : I), add_group (fg i)] {fp : I → Type w} [T : Π (i : I), affine_space (fg i) (fp i)] :
affine_space (Π (i : I), fg i) (Π (i : I), fp i)

A product of add_torsors is an add_torsor.

Equations
@[simp]
theorem pi.vadd_apply {I : Type u} {fg : I → Type v} [Π (i : I), add_group (fg i)] {fp : I → Type w} [T : Π (i : I), affine_space (fg i) (fp i)] (x : Π (i : I), fg i) (y : Π (i : I), fp i) {i : I} :
(x +ᵥ y) i = x i +ᵥ y i

Addition in a product of add_torsors.

def equiv.vadd_const {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (p : P) :
G P

v ↦ v +ᵥ p as an equivalence.

Equations
@[simp]
theorem equiv.coe_vadd_const {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (p : P) :
(equiv.vadd_const p) = λ (v : G), v +ᵥ p
@[simp]
theorem equiv.coe_vadd_const_symm {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (p : P) :
((equiv.vadd_const p).symm) = λ (p' : P), p' -ᵥ p
def equiv.const_vsub {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (p : P) :
P G

p' ↦ p -ᵥ p' as an equivalence.

Equations
@[simp]
theorem equiv.coe_const_vsub {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (p : P) :
@[simp]
theorem equiv.coe_const_vsub_symm {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (p : P) :
((equiv.const_vsub p).symm) = λ (v : G), -v +ᵥ p
def equiv.const_vadd {G : Type u_1} (P : Type u_2) [add_group G] [affine_space G P] (v : G) :

The permutation given by p ↦ v +ᵥ p.

Equations
@[simp]
theorem equiv.coe_const_vadd {G : Type u_1} (P : Type u_2) [add_group G] [affine_space G P] (v : G) :
@[simp]
theorem equiv.const_vadd_zero (G : Type u_1) (P : Type u_2) [add_group G] [affine_space G P] :
@[simp]
theorem equiv.const_vadd_add {G : Type u_1} (P : Type u_2) [add_group G] [affine_space G P] (v₁ v₂ : G) :
equiv.const_vadd P (v₁ + v₂) = (equiv.const_vadd P v₁) * equiv.const_vadd P v₂
def equiv.const_vadd_hom {G : Type u_1} (P : Type u_2) [add_group G] [affine_space G P] :

equiv.const_vadd as a homomorphism from multiplicative G to equiv.perm P

Equations
def equiv.point_reflection {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (x : P) :

Point reflection in x as a permutation.

Equations
theorem equiv.point_reflection_apply {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (x y : P) :
@[simp]
theorem equiv.point_reflection_symm {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (x : P) :
@[simp]
theorem equiv.point_reflection_self {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (x : P) :
theorem equiv.point_reflection_involutive {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] (x : P) :
theorem equiv.point_reflection_fixed_iff_of_injective_bit0 {G : Type u_1} {P : Type u_2} [add_group G] [affine_space G P] {x y : P} (h : function.injective bit0) :

x is the only fixed point of point_reflection x. This lemma requires x + x = y + y ↔ x = y. There is no typeclass to use here, so we add it as an explicit argument.