mathlib3 documentation

topology.algebra.module.locally_convex

Locally convex topological modules #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

A locally_convex_space is a topological semimodule over an ordered semiring in which any point admits a neighborhood basis made of convex sets, or equivalently, in which convex neighborhoods of a point form a neighborhood basis at that point.

In a module, this is equivalent to 0 satisfying such properties.

Main results #

TODO #

@[class]
structure locally_convex_space (𝕜 : Type u_1) (E : Type u_2) [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] [topological_space E] :
Prop

A locally_convex_space is a topological semimodule over an ordered semiring in which convex neighborhoods of a point form a neighborhood basis at that point.

Instances of this typeclass
theorem locally_convex_space_iff (𝕜 : Type u_1) (E : Type u_2) [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] [topological_space E] :
locally_convex_space 𝕜 E (x : E), (nhds x).has_basis (λ (s : set E), s nhds x convex 𝕜 s) id
theorem locally_convex_space.of_bases (𝕜 : Type u_1) (E : Type u_2) [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] [topological_space E] {ι : Type u_3} (b : E ι set E) (p : E ι Prop) (hbasis : (x : E), (nhds x).has_basis (p x) (b x)) (hconvex : (x : E) (i : ι), p x i convex 𝕜 (b x i)) :
theorem locally_convex_space.convex_basis_zero (𝕜 : Type u_1) (E : Type u_2) [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] [topological_space E] [locally_convex_space 𝕜 E] :
(nhds 0).has_basis (λ (s : set E), s nhds 0 convex 𝕜 s) id
theorem locally_convex_space_iff_exists_convex_subset (𝕜 : Type u_1) (E : Type u_2) [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] [topological_space E] :
locally_convex_space 𝕜 E (x : E) (U : set E), U nhds x ( (S : set E) (H : S nhds x), convex 𝕜 S S U)
theorem locally_convex_space.of_basis_zero (𝕜 : Type u_1) (E : Type u_2) [ordered_semiring 𝕜] [add_comm_group E] [module 𝕜 E] [topological_space E] [topological_add_group E] {ι : Type u_3} (b : ι set E) (p : ι Prop) (hbasis : (nhds 0).has_basis p b) (hconvex : (i : ι), p i convex 𝕜 (b i)) :
theorem locally_convex_space_iff_zero (𝕜 : Type u_1) (E : Type u_2) [ordered_semiring 𝕜] [add_comm_group E] [module 𝕜 E] [topological_space E] [topological_add_group E] :
locally_convex_space 𝕜 E (nhds 0).has_basis (λ (s : set E), s nhds 0 convex 𝕜 s) id
theorem locally_convex_space_iff_exists_convex_subset_zero (𝕜 : Type u_1) (E : Type u_2) [ordered_semiring 𝕜] [add_comm_group E] [module 𝕜 E] [topological_space E] [topological_add_group E] :
locally_convex_space 𝕜 E (U : set E), U nhds 0 ( (S : set E) (H : S nhds 0), convex 𝕜 S S U)
theorem disjoint.exists_open_convexes {𝕜 : Type u_1} {E : Type u_2} [linear_ordered_field 𝕜] [add_comm_group E] [module 𝕜 E] [topological_space E] [topological_add_group E] [has_continuous_const_smul 𝕜 E] [locally_convex_space 𝕜 E] {s t : set E} (disj : disjoint s t) (hs₁ : convex 𝕜 s) (hs₂ : is_compact s) (ht₁ : convex 𝕜 t) (ht₂ : is_closed t) :
(u v : set E), is_open u is_open v convex 𝕜 u convex 𝕜 v s u t v disjoint u v

In a locally convex space, if s, t are disjoint convex sets, s is compact and t is closed, then we can find open disjoint convex sets containing them.

theorem locally_convex_space_Inf {𝕜 : Type u_2} {E : Type u_3} [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] {ts : set (topological_space E)} (h : (t : topological_space E), t ts locally_convex_space 𝕜 E) :
theorem locally_convex_space_infi {ι : Sort u_1} {𝕜 : Type u_2} {E : Type u_3} [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] {ts' : ι topological_space E} (h' : (i : ι), locally_convex_space 𝕜 E) :
theorem locally_convex_space_inf {𝕜 : Type u_2} {E : Type u_3} [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] {t₁ t₂ : topological_space E} (h₁ : locally_convex_space 𝕜 E) (h₂ : locally_convex_space 𝕜 E) :
theorem locally_convex_space_induced {𝕜 : Type u_2} {E : Type u_3} {F : Type u_4} [ordered_semiring 𝕜] [add_comm_monoid E] [module 𝕜 E] [add_comm_monoid F] [module 𝕜 F] {t : topological_space F} [locally_convex_space 𝕜 F] (f : E →ₗ[𝕜] F) :
@[protected, instance]
def pi.locally_convex_space {𝕜 : Type u_2} [ordered_semiring 𝕜] {ι : Type u_1} {X : ι Type u_3} [Π (i : ι), add_comm_monoid (X i)] [Π (i : ι), topological_space (X i)] [Π (i : ι), module 𝕜 (X i)] [ (i : ι), locally_convex_space 𝕜 (X i)] :
locally_convex_space 𝕜 (Π (i : ι), X i)
@[protected, instance]