mathlib3 documentation


Eisenstein's criterion #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

A proof of a slight generalisation of Eisenstein's criterion for the irreducibility of a polynomial over an integral domain.

theorem polynomial.irreducible_of_eisenstein_criterion {R : Type u_1} [comm_ring R] [is_domain R] {f : polynomial R} {P : ideal R} (hP : P.is_prime) (hfl : f.leading_coeff P) (hfP : (n : ), n < f.coeff n P) (hfd0 : 0 < (h0 : f.coeff 0 P ^ 2) (hu : f.is_primitive) :

If f is a non constant polynomial with coefficients in R, and P is a prime ideal in R, then if every coefficient in R except the leading coefficient is in P, and the trailing coefficient is not in P^2 and no non units in R divide f, then f is irreducible.