mathlib3 documentation

analysis.box_integral.partition.subbox_induction

Induction on subboxes #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

In this file we prove (see box_integral.tagged_partition.exists_is_Henstock_is_subordinate_homothetic) that for every box I in ℝⁿ and a function r : ℝⁿ → ℝ positive on I there exists a tagged partition π of I such that

Later we will use this lemma to prove that the Henstock filter is nontrivial, hence the Henstock integral is well-defined.

Tags #

partition, tagged partition, Henstock integral

Split a box in ℝⁿ into 2 ^ n boxes by hyperplanes passing through its center.

Equations
theorem box_integral.box.subbox_induction_on {ι : Type u_1} [fintype ι] {p : box_integral.box ι Prop} (I : box_integral.box ι) (H_ind : (J : box_integral.box ι), J I ( (J' : box_integral.box ι), J' box_integral.prepartition.split_center J p J') p J) (H_nhds : (z : ι ), z box_integral.box.Icc I ( (U : set )) (H : U nhds_within z (box_integral.box.Icc I)), (J : box_integral.box ι), J I (m : ), z box_integral.box.Icc J box_integral.box.Icc J U ( (i : ι), J.upper i - J.lower i = (I.upper i - I.lower i) / 2 ^ m) p J)) :
p I

Let p be a predicate on box ι, let I be a box. Suppose that the following two properties hold true.

  • Consider a smaller box J ≤ I. The hyperplanes passing through the center of J split it into 2 ^ n boxes. If p holds true on each of these boxes, then it true on J.
  • For each z in the closed box I.Icc there exists a neighborhood U of z within I.Icc such that for every box J ≤ I such that z ∈ J.Icc ⊆ U, if J is homothetic to I with a coefficient of the form 1 / 2 ^ m, then p is true on J.

Then p I is true. See also box_integral.box.subbox_induction_on' for a version using box_integral.box.split_center_box instead of box_integral.prepartition.split_center.

Given a box I in ℝⁿ and a function r : ℝⁿ → (0, ∞), there exists a tagged partition π of I such that

  • π is a Henstock partition;
  • π is subordinate to r;
  • each box in π is homothetic to I with coefficient of the form 1 / 2 ^ m.

This lemma implies that the Henstock filter is nontrivial, hence the Henstock integral is well-defined.

Given a box I in ℝⁿ, a function r : ℝⁿ → (0, ∞), and a prepartition π of I, there exists a tagged prepartition π' of I such that

  • each box of π' is included in some box of π;
  • π' is a Henstock partition;
  • π' is subordinate to r;
  • π' covers exactly the same part of I as π;
  • the distortion of π' is equal to the distortion of π.

Given a prepartition π of a box I and a function r : ℝⁿ → (0, ∞), π.to_subordinate r is a tagged partition π' such that

  • each box of π' is included in some box of π;
  • π' is a Henstock partition;
  • π' is subordinate to r;
  • π' covers exactly the same part of I as π;
  • the distortion of π' is equal to the distortion of π.
Equations

Given a tagged prepartition π₁, a prepartition π₂ that covers exactly I \ π₁.Union, and a function r : ℝⁿ → (0, ∞), returns the union of π₁ and π₂.to_subordinate r. This partition π has the following properties:

  • π is a partition, i.e. it covers the whole I;
  • π₁.boxes ⊆ π.boxes;
  • π.tag J = π₁.tag J whenever J ∈ π₁;
  • π is Henstock outside of π₁: π.tag J ∈ J.Icc whenever J ∈ π, J ∉ π₁;
  • π is subordinate to r outside of π₁;
  • the distortion of π is equal to the maximum of the distortions of π₁ and π₂.
Equations