The Abel-Ruffini Theorem #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file proves one direction of the Abel-Ruffini theorem, namely that if an element is solvable by radicals, then its minimal polynomial has solvable Galois group.
Main definitions #
solvable_by_rad F E
: the intermediate field of solvable-by-radicals elements
Main results #
- the Abel-Ruffini Theorem
solvable_by_rad.is_solvable'
: An irreducible polynomial with a root that is solvable by radicals has a solvable Galois group.
- base : ∀ {F : Type u_1} [_inst_1 : field F] {E : Type u_2} [_inst_2 : field E] [_inst_3 : algebra F E] (α : F), is_solvable_by_rad F (⇑(algebra_map F E) α)
- add : ∀ {F : Type u_1} [_inst_1 : field F] {E : Type u_2} [_inst_2 : field E] [_inst_3 : algebra F E] (α β : E), is_solvable_by_rad F α → is_solvable_by_rad F β → is_solvable_by_rad F (α + β)
- neg : ∀ {F : Type u_1} [_inst_1 : field F] {E : Type u_2} [_inst_2 : field E] [_inst_3 : algebra F E] (α : E), is_solvable_by_rad F α → is_solvable_by_rad F (-α)
- mul : ∀ {F : Type u_1} [_inst_1 : field F] {E : Type u_2} [_inst_2 : field E] [_inst_3 : algebra F E] (α β : E), is_solvable_by_rad F α → is_solvable_by_rad F β → is_solvable_by_rad F (α * β)
- inv : ∀ {F : Type u_1} [_inst_1 : field F] {E : Type u_2} [_inst_2 : field E] [_inst_3 : algebra F E] (α : E), is_solvable_by_rad F α → is_solvable_by_rad F α⁻¹
- rad : ∀ {F : Type u_1} [_inst_1 : field F] {E : Type u_2} [_inst_2 : field E] [_inst_3 : algebra F E] (α : E) (n : ℕ), n ≠ 0 → is_solvable_by_rad F (α ^ n) → is_solvable_by_rad F α
Inductive definition of solvable by radicals
The intermediate field of solvable-by-radicals elements
Equations
- solvable_by_rad F E = {to_subalgebra := {carrier := is_solvable_by_rad F _inst_3, mul_mem' := _, one_mem' := _, add_mem' := _, zero_mem' := _, algebra_map_mem' := _}, neg_mem' := _, inv_mem' := _}
The statement to be proved inductively
Equations
- solvable_by_rad.P α = is_solvable (minpoly F α).gal
An auxiliary induction lemma, which is generalized by solvable_by_rad.is_solvable
.
An auxiliary induction lemma, which is generalized by solvable_by_rad.is_solvable
.
An auxiliary induction lemma, which is generalized by solvable_by_rad.is_solvable
.
Abel-Ruffini Theorem (one direction): An irreducible polynomial with an
is_solvable_by_rad
root has solvable Galois group