Further lemmas about units in a monoid_with_zero
or a group_with_zero
. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
@[simp]
@[simp]
theorem
div_div_div_cancel_right
{G₀ : Type u_3}
[group_with_zero G₀]
{b c : G₀}
(a : G₀)
(hc : c ≠ 0) :
theorem
mul_div_cancel_left_of_imp
{G₀ : Type u_3}
[comm_group_with_zero G₀]
{a b : G₀}
(h : a = 0 → b = 0) :
theorem
mul_div_cancel_left
{G₀ : Type u_3}
[comm_group_with_zero G₀]
{a : G₀}
(b : G₀)
(ha : a ≠ 0) :
theorem
mul_div_cancel_of_imp'
{G₀ : Type u_3}
[comm_group_with_zero G₀]
{a b : G₀}
(h : b = 0 → a = 0) :
theorem
mul_div_mul_left
{G₀ : Type u_3}
[comm_group_with_zero G₀]
{c : G₀}
(a b : G₀)
(hc : c ≠ 0) :
theorem
map_ne_zero
{M₀ : Type u_2}
{G₀ : Type u_3}
{F : Type u_6}
[monoid_with_zero M₀]
[group_with_zero G₀]
[nontrivial M₀]
[monoid_with_zero_hom_class F G₀ M₀]
(f : F)
{a : G₀} :
@[simp]
theorem
map_eq_zero
{M₀ : Type u_2}
{G₀ : Type u_3}
{F : Type u_6}
[monoid_with_zero M₀]
[group_with_zero G₀]
[nontrivial M₀]
[monoid_with_zero_hom_class F G₀ M₀]
(f : F)
{a : G₀} :
theorem
eq_on_inv₀
{G₀ : Type u_3}
{M₀' : Type u_4}
{F' : Type u_7}
[group_with_zero G₀]
[monoid_with_zero M₀']
[monoid_with_zero_hom_class F' G₀ M₀']
{a : G₀}
(f g : F')
(h : ⇑f a = ⇑g a) :
@[simp]
theorem
map_inv₀
{G₀ : Type u_3}
{G₀' : Type u_5}
{F : Type u_6}
[group_with_zero G₀]
[group_with_zero G₀']
[monoid_with_zero_hom_class F G₀ G₀']
(f : F)
(a : G₀) :
A monoid homomorphism between groups with zeros sending 0
to 0
sends a⁻¹
to (f a)⁻¹
.
@[simp]
theorem
map_div₀
{G₀ : Type u_3}
{G₀' : Type u_5}
{F : Type u_6}
[group_with_zero G₀]
[group_with_zero G₀']
[monoid_with_zero_hom_class F G₀ G₀']
(f : F)
(a b : G₀) :
We define the inverse as a monoid_with_zero_hom
by extending the inverse map by zero
on non-units.
Equations
- monoid_with_zero.inverse = {to_fun := ring.inverse (comm_monoid_with_zero.to_monoid_with_zero M), map_zero' := _, map_one' := _, map_mul' := _}
@[simp]
@[simp]
Inversion on a commutative group with zero, considered as a monoid with zero homomorphism.
Equations
- inv_monoid_with_zero_hom = {to_fun := inv_monoid_hom.to_fun, map_zero' := _, map_one' := _, map_mul' := _}