Lemmas which are consequences of monoidal coherence #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
These lemmas are all proved by coherence
.
Future work #
Investigate whether these lemmas are really needed,
or if they can be replaced by use of the coherence
tactic.
theorem
category_theory.monoidal_category.pentagon_inv_inv_hom_assoc
{C : Type u_1}
[category_theory.category C]
[category_theory.monoidal_category C]
(W X Y Z : C)
{X' : C}
(f' : (W ⊗ X) ⊗ Y ⊗ Z ⟶ X') :
theorem
category_theory.monoidal_category.unitors_equal
{C : Type u_1}
[category_theory.category C]
[category_theory.monoidal_category C] :
theorem
category_theory.monoidal_category.unitors_inv_equal
{C : Type u_1}
[category_theory.category C]
[category_theory.monoidal_category C] :
theorem
category_theory.monoidal_category.pentagon_hom_inv_assoc
{C : Type u_1}
[category_theory.category C]
[category_theory.monoidal_category C]
{W X Y Z X' : C}
(f' : W ⊗ (X ⊗ Y) ⊗ Z ⟶ X') :
theorem
category_theory.monoidal_category.pentagon_inv_hom_assoc
{C : Type u_1}
[category_theory.category C]
[category_theory.monoidal_category C]
(W X Y Z : C)
{X' : C}
(f' : (W ⊗ X ⊗ Y) ⊗ Z ⟶ X') :