The category of locally ringed spaces #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We define (bundled) locally ringed spaces (as SheafedSpace CommRing
along with the fact that the
stalks are local rings), and morphisms between these (morphisms in SheafedSpace
with
is_local_ring_hom
on the stalk maps).
- to_SheafedSpace : algebraic_geometry.SheafedSpace CommRing
- local_ring : ∀ (x : ↥(self.to_SheafedSpace.to_PresheafedSpace.carrier)), local_ring ↥(self.to_SheafedSpace.to_PresheafedSpace.presheaf.stalk x)
A LocallyRingedSpace
is a topological space equipped with a sheaf of commutative rings
such that all the stalks are local rings.
A morphism of locally ringed spaces is a morphism of ringed spaces such that the morphisms induced on stalks are local ring homomorphisms.
Instances for algebraic_geometry.LocallyRingedSpace
- algebraic_geometry.LocallyRingedSpace.has_sizeof_inst
- algebraic_geometry.LocallyRingedSpace.has_coe_to_sort
- algebraic_geometry.LocallyRingedSpace.quiver
- algebraic_geometry.LocallyRingedSpace.category_theory.category
- algebraic_geometry.LocallyRingedSpace.category_theory.limits.has_coproducts
- algebraic_geometry.LocallyRingedSpace.category_theory.limits.has_coequalizers
- algebraic_geometry.LocallyRingedSpace.category_theory.limits.has_colimits
An alias for to_SheafedSpace
, where the result type is a RingedSpace
.
This allows us to use dot-notation for the RingedSpace
namespace.
Equations
The underlying topological space of a locally ringed space.
Equations
The structure sheaf of a locally ringed space.
Equations
- X.𝒪 = X.to_SheafedSpace.sheaf
- val : X.to_SheafedSpace ⟶ Y.to_SheafedSpace
- prop : ∀ (x : ↥(X.to_SheafedSpace.to_PresheafedSpace)), is_local_ring_hom (algebraic_geometry.PresheafedSpace.stalk_map self.val x)
A morphism of locally ringed spaces is a morphism of ringed spaces such that the morphims induced on stalks are local ring homomorphisms.
Instances for algebraic_geometry.LocallyRingedSpace.hom
- algebraic_geometry.LocallyRingedSpace.hom.has_sizeof_inst
- algebraic_geometry.LocallyRingedSpace.hom.inhabited
The stalk of a locally ringed space, just as a CommRing
.
Equations
- X.stalk x = X.to_SheafedSpace.to_PresheafedSpace.presheaf.stalk x
A morphism of locally ringed spaces f : X ⟶ Y
induces
a local ring homomorphism from Y.stalk (f x)
to X.stalk x
for any x : X
.
Equations
Instances for algebraic_geometry.LocallyRingedSpace.stalk_map
The identity morphism on a locally ringed space.
Equations
Composition of morphisms of locally ringed spaces.
The category of locally ringed spaces.
Equations
- algebraic_geometry.LocallyRingedSpace.category_theory.category = {to_category_struct := {to_quiver := {hom := algebraic_geometry.LocallyRingedSpace.hom}, id := algebraic_geometry.LocallyRingedSpace.id, comp := λ (X Y Z : algebraic_geometry.LocallyRingedSpace) (f : X ⟶ Y) (g : Y ⟶ Z), algebraic_geometry.LocallyRingedSpace.comp f g}, id_comp' := algebraic_geometry.LocallyRingedSpace.category_theory.category._proof_1, comp_id' := algebraic_geometry.LocallyRingedSpace.category_theory.category._proof_2, assoc' := algebraic_geometry.LocallyRingedSpace.category_theory.category._proof_3}
The forgetful functor from LocallyRingedSpace
to SheafedSpace CommRing
.
Equations
- algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace = {obj := λ (X : algebraic_geometry.LocallyRingedSpace), X.to_SheafedSpace, map := λ (X Y : algebraic_geometry.LocallyRingedSpace) (f : X ⟶ Y), f.val, map_id' := algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace._proof_1, map_comp' := algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace._proof_2}
Instances for algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace
- algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace.category_theory.faithful
- algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace.category_theory.reflects_isomorphisms
- algebraic_geometry.LocallyRingedSpace.is_open_immersion.forget_preserves_pullback_of_left
- algebraic_geometry.LocallyRingedSpace.is_open_immersion.forget_reflects_pullback_of_left
- algebraic_geometry.LocallyRingedSpace.is_open_immersion.forget_preserves_pullback_of_right
- algebraic_geometry.LocallyRingedSpace.is_open_immersion.forget_reflects_pullback_of_right
- algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace.category_theory.limits.preserves_colimits_of_shape
- algebraic_geometry.LocallyRingedSpace.preserves_coequalizer
- algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace.category_theory.limits.preserves_colimits
- algebraic_geometry.LocallyRingedSpace.glue_data.algebraic_geometry.LocallyRingedSpace.forget_to_SheafedSpace.category_theory.limits.preserves_limit
The forgetful functor from LocallyRingedSpace
to Top
.
Given two locally ringed spaces X
and Y
, an isomorphism between X
and Y
as sheafed
spaces can be lifted to a morphism X ⟶ Y
as locally ringed spaces.
See also iso_of_SheafedSpace_iso
.
Equations
Given two locally ringed spaces X
and Y
, an isomorphism between X
and Y
as sheafed
spaces can be lifted to an isomorphism X ⟶ Y
as locally ringed spaces.
This is related to the property that the functor forget_to_SheafedSpace
reflects isomorphisms.
In fact, it is slightly stronger as we do not require f
to come from a morphism between
locally ringed spaces.
The restriction of a locally ringed space along an open embedding.
Equations
- X.restrict h = {to_SheafedSpace := X.to_SheafedSpace.restrict h, local_ring := _}
The canonical map from the restriction to the supspace.
Equations
- X.of_restrict h = {val := X.to_SheafedSpace.to_PresheafedSpace.of_restrict h, prop := _}
The restriction of a locally ringed space X
to the top subspace is isomorphic to X
itself.
The global sections, notated Gamma.