The complex log
function #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Basic properties, relationship with exp
.
theorem
complex.log_of_real_mul
{r : ℝ}
(hr : 0 < r)
{x : ℂ}
(hx : x ≠ 0) :
complex.log (↑r * x) = ↑(real.log r) + complex.log x
theorem
complex.log_mul_of_real
(r : ℝ)
(hr : 0 < r)
(x : ℂ)
(hx : x ≠ 0) :
complex.log (x * ↑r) = ↑(real.log r) + complex.log x
theorem
complex.log_conj_eq_ite
(x : ℂ) :
complex.log (⇑(star_ring_end ℂ) x) = ite (x.arg = real.pi) (complex.log x) (⇑(star_ring_end ℂ) (complex.log x))
theorem
complex.log_conj
(x : ℂ)
(h : x.arg ≠ real.pi) :
complex.log (⇑(star_ring_end ℂ) x) = ⇑(star_ring_end ℂ) (complex.log x)
theorem
complex.log_inv_eq_ite
(x : ℂ) :
complex.log x⁻¹ = ite (x.arg = real.pi) (-⇑(star_ring_end ℂ) (complex.log x)) (-complex.log x)
Alias of the reverse direction of complex.countable_preimage_exp
.
theorem
complex.tendsto_log_nhds_within_im_neg_of_re_neg_of_im_zero
{z : ℂ}
(hre : z.re < 0)
(him : z.im = 0) :
filter.tendsto complex.log (nhds_within z {z : ℂ | z.im < 0}) (nhds (↑(real.log (⇑complex.abs z)) - ↑real.pi * complex.I))
theorem
complex.continuous_within_at_log_of_re_neg_of_im_zero
{z : ℂ}
(hre : z.re < 0)
(him : z.im = 0) :
continuous_within_at complex.log {z : ℂ | 0 ≤ z.im} z
theorem
complex.tendsto_log_nhds_within_im_nonneg_of_re_neg_of_im_zero
{z : ℂ}
(hre : z.re < 0)
(him : z.im = 0) :
filter.tendsto complex.log (nhds_within z {z : ℂ | 0 ≤ z.im}) (nhds (↑(real.log (⇑complex.abs z)) + ↑real.pi * complex.I))
@[simp]
theorem
filter.tendsto.clog
{α : Type u_1}
{l : filter α}
{f : α → ℂ}
{x : ℂ}
(h : filter.tendsto f l (nhds x))
(hx : 0 < x.re ∨ x.im ≠ 0) :
filter.tendsto (λ (t : α), complex.log (f t)) l (nhds (complex.log x))
theorem
continuous_at.clog
{α : Type u_1}
[topological_space α]
{f : α → ℂ}
{x : α}
(h₁ : continuous_at f x)
(h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous_at (λ (t : α), complex.log (f t)) x
theorem
continuous_within_at.clog
{α : Type u_1}
[topological_space α]
{f : α → ℂ}
{s : set α}
{x : α}
(h₁ : continuous_within_at f s x)
(h₂ : 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous_within_at (λ (t : α), complex.log (f t)) s x
theorem
continuous_on.clog
{α : Type u_1}
[topological_space α]
{f : α → ℂ}
{s : set α}
(h₁ : continuous_on f s)
(h₂ : ∀ (x : α), x ∈ s → 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous_on (λ (t : α), complex.log (f t)) s
theorem
continuous.clog
{α : Type u_1}
[topological_space α]
{f : α → ℂ}
(h₁ : continuous f)
(h₂ : ∀ (x : α), 0 < (f x).re ∨ (f x).im ≠ 0) :
continuous (λ (t : α), complex.log (f t))