Integral over a torus in ℂⁿ #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we define the integral of a function f : ℂⁿ → E over a torus
{z : ℂⁿ | ∀ i, z i ∈ metric.sphere (c i) (R i)}. In order to do this, we define
torus_map (c : ℂⁿ) (R θ : ℝⁿ) to be the point in ℂⁿ given by $z_k=c_k+R_ke^{θ_ki}$,
where $i$ is the imaginary unit, then define torus_integral f c R as the integral over
the cube $[0, (λ _, 2π)] = \{θ\|∀ k, 0 ≤ θ_k ≤ 2π\}$ of the Jacobian of the
torus_map multiplied by f (torus_map c R θ).
We also define a predicate saying that f ∘ torus_map c R is integrable on the cube
[0, (λ _, 2\pi)].
Main definitions #
-
torus_map c R: the generalized multidimensional exponential map fromℝⁿtoℂⁿthat sends $θ=(θ_0,…,θ_{n-1})$ to $z=(z_0,…,z_{n-1})$, where $z_k= c_k + R_ke^{θ_k i}$; -
torus_integrable f c R: a functionf : ℂⁿ → Eis integrable over the generalized torus with centerc : ℂⁿand radiusR : ℝⁿiff ∘ torus_map c Ris integrable on the closed cubeIcc (0 : ℝⁿ) (λ _, 2 * π); -
torus_integral f c R: the integral of a functionf : ℂⁿ → Eover a torus with centerc ∈ ℂⁿand radiusR ∈ ℝⁿdefined as $\iiint_{[0, 2 * π]} (∏_{k = 1}^{n} i R_k e^{θ_k * i}) • f (c + Re^{θ_k i})\,dθ_0…dθ_{k-1}$.
Main statements #
torus_integral_dim0,torus_integral_dim1,torus_integral_succ: formulas fortorus_integralin cases of dimension0,1, andn + 1.
Notations #
ℝ⁰,ℝ¹,ℝⁿ,ℝⁿ⁺¹: local notation forfin 0 → ℝ,fin 1 → ℝ,fin n → ℝ, andfin (n + 1) → ℝ, respectively;ℂ⁰,ℂ¹,ℂⁿ,ℂⁿ⁺¹: local notation forfin 0 → ℂ,fin 1 → ℂ,fin n → ℂ, andfin (n + 1) → ℂ, respectively;∯ z in T(c, R), f z: notation fortorus_integral f c R;∮ z in C(c, R), f z: notation forcircle_integral f c R, defined elsewhere;∏ k, f k: notation forfinset.prod, defined elsewhere;π: notation forreal.pi, defined elsewhere.
Tags #
integral, torus
The n dimensional exponential map $θ_i ↦ c + R e^{θ_i*I}, θ ∈ ℝⁿ$ representing
a torus in ℂⁿ with center c ∈ ℂⁿ and generalized radius R ∈ ℝⁿ, so we can adjust
it to every n axis.
Integrability of a function on a generalized torus #
A function f : ℂⁿ → E is integrable on the generalized torus if the function
f ∘ torus_map c R θ is integrable on Icc (0 : ℝⁿ) (λ _, 2 * π)
Equations
- torus_integrable f c R = measure_theory.integrable_on (λ (θ : fin n → ℝ), f (torus_map c R θ)) (set.Icc 0 (λ (_x : fin n), 2 * real.pi)) measure_theory.measure_space.volume
Constant functions are torus integrable
If f is torus integrable then -f is torus integrable.
If f and g are two torus integrable functions, then so is f + g.
If f and g are two torus integrable functions, then so is f - g.
The function given in the definition of torus_integral is integrable.
The definition of the integral over a generalized torus with center c ∈ ℂⁿ and radius R ∈ ℝⁿ
as the •-product of the derivative of torus_map and f (torus_map c R θ)
If for all θ : ℝⁿ, ‖f (torus_map c R θ)‖ is less than or equal to a constant C : ℝ, then
‖∯ x in T(c, R), f x‖ is less than or equal to (2 * π)^n * (∏ i, |R i|) * C
In dimension one, torus_integral is the same as circle_integral
(up to the natural equivalence between ℂ and fin 1 → ℂ).
Recurrent formula for torus_integral, see also torus_integral_succ.
Recurrent formula for torus_integral, see also torus_integral_succ_above.