Integral over a torus in ℂⁿ
#
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we define the integral of a function f : ℂⁿ → E
over a torus
{z : ℂⁿ | ∀ i, z i ∈ metric.sphere (c i) (R i)}
. In order to do this, we define
torus_map (c : ℂⁿ) (R θ : ℝⁿ)
to be the point in ℂⁿ
given by $z_k=c_k+R_ke^{θ_ki}$,
where $i$ is the imaginary unit, then define torus_integral f c R
as the integral over
the cube $[0, (λ _, 2π)] = \{θ\|∀ k, 0 ≤ θ_k ≤ 2π\}$ of the Jacobian of the
torus_map
multiplied by f (torus_map c R θ)
.
We also define a predicate saying that f ∘ torus_map c R
is integrable on the cube
[0, (λ _, 2\pi)]
.
Main definitions #
-
torus_map c R
: the generalized multidimensional exponential map fromℝⁿ
toℂⁿ
that sends $θ=(θ_0,…,θ_{n-1})$ to $z=(z_0,…,z_{n-1})$, where $z_k= c_k + R_ke^{θ_k i}$; -
torus_integrable f c R
: a functionf : ℂⁿ → E
is integrable over the generalized torus with centerc : ℂⁿ
and radiusR : ℝⁿ
iff ∘ torus_map c R
is integrable on the closed cubeIcc (0 : ℝⁿ) (λ _, 2 * π)
; -
torus_integral f c R
: the integral of a functionf : ℂⁿ → E
over a torus with centerc ∈ ℂⁿ
and radiusR ∈ ℝⁿ
defined as $\iiint_{[0, 2 * π]} (∏_{k = 1}^{n} i R_k e^{θ_k * i}) • f (c + Re^{θ_k i})\,dθ_0…dθ_{k-1}$.
Main statements #
torus_integral_dim0
,torus_integral_dim1
,torus_integral_succ
: formulas fortorus_integral
in cases of dimension0
,1
, andn + 1
.
Notations #
ℝ⁰
,ℝ¹
,ℝⁿ
,ℝⁿ⁺¹
: local notation forfin 0 → ℝ
,fin 1 → ℝ
,fin n → ℝ
, andfin (n + 1) → ℝ
, respectively;ℂ⁰
,ℂ¹
,ℂⁿ
,ℂⁿ⁺¹
: local notation forfin 0 → ℂ
,fin 1 → ℂ
,fin n → ℂ
, andfin (n + 1) → ℂ
, respectively;∯ z in T(c, R), f z
: notation fortorus_integral f c R
;∮ z in C(c, R), f z
: notation forcircle_integral f c R
, defined elsewhere;∏ k, f k
: notation forfinset.prod
, defined elsewhere;π
: notation forreal.pi
, defined elsewhere.
Tags #
integral, torus
The n dimensional exponential map $θ_i ↦ c + R e^{θ_i*I}, θ ∈ ℝⁿ$ representing
a torus in ℂⁿ
with center c ∈ ℂⁿ
and generalized radius R ∈ ℝⁿ
, so we can adjust
it to every n axis.
Integrability of a function on a generalized torus #
A function f : ℂⁿ → E
is integrable on the generalized torus if the function
f ∘ torus_map c R θ
is integrable on Icc (0 : ℝⁿ) (λ _, 2 * π)
Equations
- torus_integrable f c R = measure_theory.integrable_on (λ (θ : fin n → ℝ), f (torus_map c R θ)) (set.Icc 0 (λ (_x : fin n), 2 * real.pi)) measure_theory.measure_space.volume
Constant functions are torus integrable
If f
is torus integrable then -f
is torus integrable.
If f
and g
are two torus integrable functions, then so is f + g
.
If f
and g
are two torus integrable functions, then so is f - g
.
The function given in the definition of torus_integral
is integrable.
The definition of the integral over a generalized torus with center c ∈ ℂⁿ
and radius R ∈ ℝⁿ
as the •
-product of the derivative of torus_map
and f (torus_map c R θ)
If for all θ : ℝⁿ
, ‖f (torus_map c R θ)‖
is less than or equal to a constant C : ℝ
, then
‖∯ x in T(c, R), f x‖
is less than or equal to (2 * π)^n * (∏ i, |R i|) * C
In dimension one, torus_integral
is the same as circle_integral
(up to the natural equivalence between ℂ
and fin 1 → ℂ
).
Recurrent formula for torus_integral
, see also torus_integral_succ
.
Recurrent formula for torus_integral
, see also torus_integral_succ_above
.