The Yoneda embedding for preadditive categories preserves limits #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
The Yoneda embedding for preadditive categories preserves limits.
Implementation notes #
This is in a separate file to avoid having to import the development of the abelian structure on
Module
in the main file about the preadditive Yoneda embedding.
@[protected, instance]
noncomputable
def
category_theory.preserves_limits_preadditive_yoneda_obj
{C : Type u}
[category_theory.category C]
[category_theory.preadditive C]
(X : C) :
Equations
- category_theory.preserves_limits_preadditive_yoneda_obj X = have this : category_theory.limits.preserves_limits (category_theory.preadditive_yoneda_obj X ⋙ category_theory.forget (Module (category_theory.End X))), from infer_instance, category_theory.limits.preserves_limits_of_reflects_of_preserves (category_theory.preadditive_yoneda_obj X) (category_theory.forget (Module (category_theory.End X))) Module.forget_reflects_limits
@[protected, instance]
noncomputable
def
category_theory.preserves_limits_preadditive_coyoneda_obj
{C : Type u}
[category_theory.category C]
[category_theory.preadditive C]
(X : Cᵒᵖ) :
Equations
- category_theory.preserves_limits_preadditive_coyoneda_obj X = have this : category_theory.limits.preserves_limits (category_theory.preadditive_coyoneda_obj X ⋙ category_theory.forget (Module (category_theory.End X))), from infer_instance, category_theory.limits.preserves_limits_of_reflects_of_preserves (category_theory.preadditive_coyoneda_obj X) (category_theory.forget (Module (category_theory.End X))) Module.forget_reflects_limits
@[protected, instance]
noncomputable
def
category_theory.preserves_limits_preadditive_yoneda.obj
{C : Type u}
[category_theory.category C]
[category_theory.preadditive C]
(X : C) :
@[protected, instance]
noncomputable
def
category_theory.preserves_limits_preadditive_coyoneda.obj
{C : Type u}
[category_theory.category C]
[category_theory.preadditive C]
(X : Cᵒᵖ) :