Triangles #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file contains the definition of triangles in an additive category with an additive shift. It also defines morphisms between these triangles.
TODO: generalise this to n-angles in n-angulated categories as in https://arxiv.org/abs/1006.4592
- obj₁ : C
- obj₂ : C
- obj₃ : C
- mor₁ : self.obj₁ ⟶ self.obj₂
- mor₂ : self.obj₂ ⟶ self.obj₃
- mor₃ : self.obj₃ ⟶ (category_theory.shift_functor C 1).obj self.obj₁
A triangle in C
is a sextuple (X,Y,Z,f,g,h)
where X,Y,Z
are objects of C
,
and f : X ⟶ Y
, g : Y ⟶ Z
, h : Z ⟶ X⟦1⟧
are morphisms in C
.
See https://stacks.math.columbia.edu/tag/0144.
Instances for category_theory.pretriangulated.triangle
- category_theory.pretriangulated.triangle.has_sizeof_inst
- category_theory.pretriangulated.triangle.inhabited
- category_theory.pretriangulated.triangle_category
A triangle (X,Y,Z,f,g,h)
in C
is defined by the morphisms f : X ⟶ Y
, g : Y ⟶ Z
and h : Z ⟶ X⟦1⟧
.
For each object in C
, there is a triangle of the form (X,X,0,𝟙 X,0,0)
- hom₁ : T₁.obj₁ ⟶ T₂.obj₁
- hom₂ : T₁.obj₂ ⟶ T₂.obj₂
- hom₃ : T₁.obj₃ ⟶ T₂.obj₃
- comm₁' : T₁.mor₁ ≫ self.hom₂ = self.hom₁ ≫ T₂.mor₁ . "obviously"
- comm₂' : T₁.mor₂ ≫ self.hom₃ = self.hom₂ ≫ T₂.mor₂ . "obviously"
- comm₃' : T₁.mor₃ ≫ (category_theory.shift_functor C 1).map self.hom₁ = self.hom₃ ≫ T₂.mor₃ . "obviously"
A morphism of triangles (X,Y,Z,f,g,h) ⟶ (X',Y',Z',f',g',h')
in C
is a triple of morphisms
a : X ⟶ X'
, b : Y ⟶ Y'
, c : Z ⟶ Z'
such that
a ≫ f' = f ≫ b
, b ≫ g' = g ≫ c
, and a⟦1⟧' ≫ h = h' ≫ c
.
In other words, we have a commutative diagram:
f g h
X ───> Y ───> Z ───> X⟦1⟧
│ │ │ │
│a │b │c │a⟦1⟧'
V V V V
X' ───> Y' ───> Z' ───> X'⟦1⟧
f' g' h'
See https://stacks.math.columbia.edu/tag/0144.
Instances for category_theory.pretriangulated.triangle_morphism
- category_theory.pretriangulated.triangle_morphism.has_sizeof_inst
- category_theory.pretriangulated.triangle_morphism.inhabited
The identity triangle morphism.
Composition of triangle morphisms gives a triangle morphism.
Triangles with triangle morphisms form a category.
Equations
- category_theory.pretriangulated.triangle_category = {to_category_struct := {to_quiver := {hom := λ (A B : category_theory.pretriangulated.triangle C), category_theory.pretriangulated.triangle_morphism A B}, id := λ (A : category_theory.pretriangulated.triangle C), category_theory.pretriangulated.triangle_morphism_id A, comp := λ (A B C_1 : category_theory.pretriangulated.triangle C) (f : A ⟶ B) (g : B ⟶ C_1), category_theory.pretriangulated.triangle_morphism.comp f g}, id_comp' := _, comp_id' := _, assoc' := _}
a constructor for morphisms of triangles
a constructor for isomorphisms of triangles