The finite adèle ring of a Dedekind domain #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4. We define the ring of finite adèles of a Dedekind domain
R.
Main definitions #
dedekind_domain.finite_integral_adeles: product ofadic_completion_integers, wherevruns over all maximal ideals ofR.dedekind_domain.prod_adic_completions: the product ofadic_completion, wherevruns over all maximal ideals ofR.dedekind_domain.finite_adele_ring: The finite adèle ring ofR, defined as the restricted productΠ'_v K_v.
Implementation notes #
We are only interested on Dedekind domains of Krull dimension 1 (i.e., not fields). If R is a
field, its finite adèle ring is just defined to be the trivial ring.
References #
Tags #
finite adèle ring, dedekind domain
The product of all adic_completion_integers, where v runs over the maximal ideals of R.
Equations
Instances for dedekind_domain.finite_integral_adeles
- dedekind_domain.finite_integral_adeles.comm_ring
- dedekind_domain.finite_integral_adeles.topological_space
- dedekind_domain.finite_integral_adeles.inhabited
- dedekind_domain.finite_integral_adeles.dedekind_domain.prod_adic_completions.has_coe
- dedekind_domain.finite_integral_adeles.algebra
- dedekind_domain.prod_adic_completions.algebra_completions
- dedekind_domain.prod_adic_completions.is_scalar_tower_completions
The product of all adic_completion, where v runs over the maximal ideals of R.
Equations
Instances for dedekind_domain.prod_adic_completions
- dedekind_domain.prod_adic_completions.non_unital_non_assoc_ring
- dedekind_domain.prod_adic_completions.topological_space
- dedekind_domain.prod_adic_completions.topological_ring
- dedekind_domain.prod_adic_completions.comm_ring
- dedekind_domain.prod_adic_completions.inhabited
- dedekind_domain.finite_integral_adeles.dedekind_domain.prod_adic_completions.has_coe
- dedekind_domain.prod_adic_completions.algebra
- dedekind_domain.prod_adic_completions.algebra'
- dedekind_domain.prod_adic_completions.is_scalar_tower
- dedekind_domain.prod_adic_completions.algebra_completions
- dedekind_domain.prod_adic_completions.is_scalar_tower_completions
Equations
The inclusion of R_hat in K_hat as a homomorphism of additive monoids.
Equations
- dedekind_domain.finite_integral_adeles.coe.add_monoid_hom R K = {to_fun := coe coe_to_lift, map_zero' := _, map_add' := _}
The inclusion of R_hat in K_hat as a ring homomorphism.
Equations
- dedekind_domain.finite_integral_adeles.coe.ring_hom R K = {to_fun := coe coe_to_lift, map_one' := _, map_mul' := _, map_zero' := _, map_add' := _}
The inclusion of R_hat in K_hat as an algebra homomorphism.
The finite adèle ring of a Dedekind domain #
We define the finite adèle ring of R as the restricted product over all maximal ideals v of R
of adic_completion with respect to adic_completion_integers. We prove that it is a commutative
ring. TODO: show that it is a topological ring with the restricted product topology.
An element x : K_hat R K is a finite adèle if for all but finitely many height one ideals
v, the component x v is a v-adic integer.
Equations
The sum of two finite adèles is a finite adèle.
The tuple (0)_v is a finite adèle.
The negative of a finite adèle is a finite adèle.
The product of two finite adèles is a finite adèle.
The tuple (1)_v is a finite adèle.
The finite adèle ring of R is the restricted product over all maximal ideals v of R
of adic_completion with respect to adic_completion_integers.
Equations
- dedekind_domain.finite_adele_ring R K = {carrier := {x : dedekind_domain.prod_adic_completions R K | x.is_finite_adele}, mul_mem' := _, one_mem' := _, add_mem' := _, zero_mem' := _, neg_mem' := _}