mathlib3 documentation

group_theory.subgroup.saturated

Saturated subgroups #

THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.

Tags #

subgroup, subgroups

def add_subgroup.saturated {G : Type u_1} [add_group G] (H : add_subgroup G) :
Prop

An additive subgroup H of G is saturated if for all n : ℕ and g : G with n•g ∈ H we have n = 0 or g ∈ H.

Equations
def subgroup.saturated {G : Type u_1} [group G] (H : subgroup G) :
Prop

A subgroup H of G is saturated if for all n : ℕ and g : G with g^n ∈ H we have n = 0 or g ∈ H.

Equations
theorem subgroup.saturated_iff_npow {G : Type u_1} [group G] {H : subgroup G} :
H.saturated (n : ) (g : G), g ^ n H n = 0 g H
theorem add_subgroup.saturated_iff_nsmul {G : Type u_1} [add_group G] {H : add_subgroup G} :
H.saturated (n : ) (g : G), n g H n = 0 g H
theorem add_subgroup.saturated_iff_zsmul {G : Type u_1} [add_group G] {H : add_subgroup G} :
H.saturated (n : ) (g : G), n g H n = 0 g H
theorem subgroup.saturated_iff_zpow {G : Type u_1} [group G] {H : subgroup G} :
H.saturated (n : ) (g : G), g ^ n H n = 0 g H
theorem add_subgroup.ker_saturated {A₁ : Type u_1} {A₂ : Type u_2} [add_comm_group A₁] [add_comm_group A₂] [no_zero_smul_divisors A₂] (f : A₁ →+ A₂) :