Bounded at infinity #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
For complex valued functions on the upper half plane, this file defines the filter at_im_infty
required for defining when functions are bounded at infinity and zero at infinity.
Both of which are relevant for defining modular forms.
Filter for approaching i∞
.
theorem
upper_half_plane.at_im_infty_basis
:
upper_half_plane.at_im_infty.has_basis (λ (_x : ℝ), true) (λ (i : ℝ), upper_half_plane.im ⁻¹' set.Ici i)
def
upper_half_plane.is_bounded_at_im_infty
{α : Type u_1}
[has_norm α]
(f : upper_half_plane → α) :
Prop
A function f : ℍ → α
is bounded at infinity if it is bounded along at_im_infty
.
def
upper_half_plane.is_zero_at_im_infty
{α : Type u_1}
[has_zero α]
[topological_space α]
(f : upper_half_plane → α) :
Prop
A function f : ℍ → α
is zero at infinity it is zero along at_im_infty
.
def
upper_half_plane.zero_at_im_infty_submodule
(α : Type u_1)
[normed_field α] :
submodule α (upper_half_plane → α)
Module of functions that are zero at infinity.
def
upper_half_plane.bounded_at_im_infty_subalgebra
(α : Type u_1)
[normed_field α] :
subalgebra α (upper_half_plane → α)
ubalgebra of functions that are bounded at infinity.
theorem
upper_half_plane.is_bounded_at_im_infty.mul
{f g : upper_half_plane → ℂ}
(hf : upper_half_plane.is_bounded_at_im_infty f)
(hg : upper_half_plane.is_bounded_at_im_infty g) :
theorem
upper_half_plane.bounded_mem
(f : upper_half_plane → ℂ) :
upper_half_plane.is_bounded_at_im_infty f ↔ ∃ (M A : ℝ), ∀ (z : upper_half_plane), A ≤ z.im → ⇑complex.abs (f z) ≤ M