Derivative and series expansion of real logarithm #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
In this file we prove that real.log
is infinitely smooth at all nonzero x : ℝ
. We also prove
that the series ∑' n : ℕ, x ^ (n + 1) / (n + 1)
converges to (-real.log (1 - x))
for all
x : ℝ
, |x| < 1
.
Tags #
logarithm, derivative
@[simp]
theorem
has_deriv_within_at.log
{f : ℝ → ℝ}
{x f' : ℝ}
{s : set ℝ}
(hf : has_deriv_within_at f f' s x)
(hx : f x ≠ 0) :
has_deriv_within_at (λ (y : ℝ), real.log (f y)) (f' / f x) s x
theorem
has_deriv_at.log
{f : ℝ → ℝ}
{x f' : ℝ}
(hf : has_deriv_at f f' x)
(hx : f x ≠ 0) :
has_deriv_at (λ (y : ℝ), real.log (f y)) (f' / f x) x
theorem
has_strict_deriv_at.log
{f : ℝ → ℝ}
{x f' : ℝ}
(hf : has_strict_deriv_at f f' x)
(hx : f x ≠ 0) :
has_strict_deriv_at (λ (y : ℝ), real.log (f y)) (f' / f x) x
theorem
deriv_within.log
{f : ℝ → ℝ}
{x : ℝ}
{s : set ℝ}
(hf : differentiable_within_at ℝ f s x)
(hx : f x ≠ 0)
(hxs : unique_diff_within_at ℝ s x) :
deriv_within (λ (x : ℝ), real.log (f x)) s x = deriv_within f s x / f x
theorem
has_fderiv_within_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
{s : set E}
(hf : has_fderiv_within_at f f' s x)
(hx : f x ≠ 0) :
has_fderiv_within_at (λ (x : E), real.log (f x)) ((f x)⁻¹ • f') s x
theorem
has_fderiv_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
(hf : has_fderiv_at f f' x)
(hx : f x ≠ 0) :
has_fderiv_at (λ (x : E), real.log (f x)) ((f x)⁻¹ • f') x
theorem
has_strict_fderiv_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{f' : E →L[ℝ] ℝ}
(hf : has_strict_fderiv_at f f' x)
(hx : f x ≠ 0) :
has_strict_fderiv_at (λ (x : E), real.log (f x)) ((f x)⁻¹ • f') x
theorem
differentiable_within_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{s : set E}
(hf : differentiable_within_at ℝ f s x)
(hx : f x ≠ 0) :
differentiable_within_at ℝ (λ (x : E), real.log (f x)) s x
@[simp]
theorem
differentiable_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
(hf : differentiable_at ℝ f x)
(hx : f x ≠ 0) :
differentiable_at ℝ (λ (x : E), real.log (f x)) x
theorem
cont_diff_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{n : ℕ∞}
(hf : cont_diff_at ℝ n f x)
(hx : f x ≠ 0) :
cont_diff_at ℝ n (λ (x : E), real.log (f x)) x
theorem
cont_diff_within_at.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{s : set E}
{n : ℕ∞}
(hf : cont_diff_within_at ℝ n f s x)
(hx : f x ≠ 0) :
cont_diff_within_at ℝ n (λ (x : E), real.log (f x)) s x
theorem
cont_diff_on.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{s : set E}
{n : ℕ∞}
(hf : cont_diff_on ℝ n f s)
(hs : ∀ (x : E), x ∈ s → f x ≠ 0) :
cont_diff_on ℝ n (λ (x : E), real.log (f x)) s
theorem
differentiable_on.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{s : set E}
(hf : differentiable_on ℝ f s)
(hx : ∀ (x : E), x ∈ s → f x ≠ 0) :
differentiable_on ℝ (λ (x : E), real.log (f x)) s
@[simp]
theorem
differentiable.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
(hf : differentiable ℝ f)
(hx : ∀ (x : E), f x ≠ 0) :
differentiable ℝ (λ (x : E), real.log (f x))
theorem
fderiv_within.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
{s : set E}
(hf : differentiable_within_at ℝ f s x)
(hx : f x ≠ 0)
(hxs : unique_diff_within_at ℝ s x) :
fderiv_within ℝ (λ (x : E), real.log (f x)) s x = (f x)⁻¹ • fderiv_within ℝ f s x
@[simp]
theorem
fderiv.log
{E : Type u_1}
[normed_add_comm_group E]
[normed_space ℝ E]
{f : E → ℝ}
{x : E}
(hf : differentiable_at ℝ f x)
(hx : f x ≠ 0) :
theorem
real.tendsto_mul_log_one_plus_div_at_top
(t : ℝ) :
filter.tendsto (λ (x : ℝ), x * real.log (1 + t / x)) filter.at_top (nhds t)
The function x * log (1 + t / x)
tends to t
at +∞
.
A crude lemma estimating the difference between log (1-x)
and its Taylor series at 0
,
where the main point of the bound is that it tends to 0
. The goal is to deduce the series
expansion of the logarithm, in has_sum_pow_div_log_of_abs_lt_1
.