Equations
- a.decidable_nonneg = a.cases_on (λ (a : ℕ), decidable.true) (λ (a : ℕ), decidable.false)
@[protected, instance]
Equations
- a.decidable_le b = (b - a).decidable_nonneg
@[protected, instance]
Equations
- a.decidable_lt b = (b - (a + 1)).decidable_nonneg
show that the integers form an ordered additive group
@[protected, instance]
Equations
- int.linear_order = {le := int.le, lt := int.lt, le_refl := int.le_refl, le_trans := int.le_trans, lt_iff_le_not_le := int.lt_iff_le_not_le, le_antisymm := int.le_antisymm, le_total := int.le_total, decidable_le := int.decidable_le, decidable_eq := int.decidable_eq, decidable_lt := int.decidable_lt, max := max_default (λ (a b : ℤ), a.decidable_le b), max_def := int.linear_order._proof_1, min := min_default (λ (a b : ℤ), a.decidable_le b), min_def := int.linear_order._proof_2}
int is an ordered add comm group
missing facts
more facts specific to int