Lemmas about powers in ordered fields. #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
Integer powers #
theorem
zpow_le_of_le
{α : Type u_1}
[linear_ordered_semifield α]
{a : α}
{m n : ℤ}
(ha : 1 ≤ a)
(h : m ≤ n) :
theorem
zpow_le_one_of_nonpos
{α : Type u_1}
[linear_ordered_semifield α]
{a : α}
{n : ℤ}
(ha : 1 ≤ a)
(hn : n ≤ 0) :
theorem
one_le_zpow_of_nonneg
{α : Type u_1}
[linear_ordered_semifield α]
{a : α}
{n : ℤ}
(ha : 1 ≤ a)
(hn : 0 ≤ n) :
@[protected]
theorem
nat.zpow_pos_of_pos
{α : Type u_1}
[linear_ordered_semifield α]
{a : ℕ}
(h : 0 < a)
(n : ℤ) :
theorem
nat.zpow_ne_zero_of_pos
{α : Type u_1}
[linear_ordered_semifield α]
{a : ℕ}
(h : 0 < a)
(n : ℤ) :
theorem
zpow_strict_anti
{α : Type u_1}
[linear_ordered_semifield α]
{a : α}
(h₀ : 0 < a)
(h₁ : a < 1) :
@[simp]
theorem
div_pow_le
{α : Type u_1}
[linear_ordered_semifield α]
{a b : α}
(ha : 0 ≤ a)
(hb : 1 ≤ b)
(k : ℕ) :
theorem
zpow_injective
{α : Type u_1}
[linear_ordered_semifield α]
{a : α}
(h₀ : 0 < a)
(h₁ : a ≠ 1) :
theorem
zpow_le_max_of_min_le
{α : Type u_1}
[linear_ordered_semifield α]
{x : α}
(hx : 1 ≤ x)
{a b c : ℤ}
(h : linear_order.min a b ≤ c) :
theorem
zpow_le_max_iff_min_le
{α : Type u_1}
[linear_ordered_semifield α]
{x : α}
(hx : 1 < x)
{a b c : ℤ} :
Lemmas about powers to numerals. #
@[simp]
@[simp]
@[simp]
@[simp]
@[protected]
@[protected]
theorem
even.zpow_pos
{α : Type u_1}
[linear_ordered_field α]
{a : α}
{n : ℤ}
(hn : even n)
(h : n ≠ 0) :
Alias of the reverse direction of even.zpow_pos_iff
.
Alias of the reverse direction of odd.zpow_neg_iff
.
Alias of the reverse direction of odd.zpow_nonpos_iff
.
Miscellaneous lemmmas #
theorem
nat.cast_le_pow_div_sub
{α : Type u_1}
[linear_ordered_field α]
{a : α}
(H : 1 < a)
(n : ℕ) :
For any a > 1
and a natural n
we have n ≤ a ^ n / (a - 1)
. See also
nat.cast_le_pow_sub_div_sub
for a stronger inequality with a ^ n - 1
in the numerator.