Lie subalgebras #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines Lie subalgebras of a Lie algebra and provides basic related definitions and results.
Main definitions #
lie_subalgebra
lie_subalgebra.incl
lie_subalgebra.map
lie_hom.range
lie_equiv.of_injective
lie_equiv.of_eq
lie_equiv.of_subalgebra
lie_equiv.of_subalgebras
Tags #
lie algebra, lie subalgebra
- to_submodule : submodule R L
- lie_mem' : ∀ {x y : L}, x ∈ self.to_submodule.carrier → y ∈ self.to_submodule.carrier → ⁅x, y⁆ ∈ self.to_submodule.carrier
A Lie subalgebra of a Lie algebra is submodule that is closed under the Lie bracket. This is a sufficient condition for the subset itself to form a Lie algebra.
Instances for lie_subalgebra
- lie_subalgebra.has_sizeof_inst
- lie_subalgebra.has_zero
- lie_subalgebra.inhabited
- submodule.has_coe
- lie_subalgebra.set_like
- lie_subalgebra.add_subgroup_class
- lie_subalgebra.partial_order
- lie_subalgebra.has_bot
- lie_subalgebra.has_top
- lie_subalgebra.has_inf
- lie_subalgebra.has_Inf
- lie_subalgebra.complete_lattice
- lie_subalgebra.add_comm_monoid
- lie_subalgebra.canonically_ordered_add_monoid
- lie_subalgebra.subsingleton_of_bot
- lie_subalgebra.has_coe
The zero algebra is a subalgebra of any Lie algebra.
Equations
- lie_subalgebra.inhabited R L = {default := 0}
Equations
- submodule.has_coe R L = {coe := lie_subalgebra.to_submodule _inst_3}
Equations
- lie_subalgebra.set_like R L = {coe := λ (L' : lie_subalgebra R L), ↑L', coe_injective' := _}
A Lie subalgebra forms a new Lie ring.
Equations
- lie_subalgebra.lie_ring R L L' = {to_add_comm_group := add_subgroup_class.to_add_comm_group L' _, to_has_bracket := {bracket := λ (x y : ↥L'), ⟨⁅x.val, y.val⁆, _⟩}, add_lie := _, lie_add := _, lie_self := _, leibniz_lie := _}
A Lie subalgebra inherits module structures from L
.
Equations
- lie_subalgebra.module R L L' = L'.to_submodule.module'
A Lie subalgebra forms a new Lie algebra.
Equations
- lie_subalgebra.lie_algebra R L L' = {to_module := lie_subalgebra.module R L L', lie_smul := _}
Given a Lie algebra L
containing a Lie subalgebra L' ⊆ L
, together with a Lie ring module
M
of L
, we may regard M
as a Lie ring module of L'
by restriction.
Equations
- L'.lie_ring_module = {to_has_bracket := {bracket := λ (x : ↥L') (m : M), ⁅↑x, m⁆}, add_lie := _, lie_add := _, leibniz_lie := _}
Given a Lie algebra L
containing a Lie subalgebra L' ⊆ L
, together with a Lie module M
of
L
, we may regard M
as a Lie module of L'
by restriction.
Equations
- L'.lie_module = {smul_lie := _, lie_smul := _}
An L
-equivariant map of Lie modules M → N
is L'
-equivariant for any Lie subalgebra
L' ⊆ L
.
The embedding of a Lie subalgebra into the ambient space as a morphism of Lie algebras.
The embedding of a Lie subalgebra into the ambient space as a morphism of Lie modules.
The range of a morphism of Lie algebras is a Lie subalgebra.
We can restrict a morphism to a (surjective) map to its range.
Equations
- f.range_restrict = {to_linear_map := {to_fun := ↑f.range_restrict.to_fun, map_add' := _, map_smul' := _}, map_lie' := _}
A Lie algebra is equivalent to its range under an injective Lie algebra morphism.
Equations
The image of a Lie subalgebra under a Lie algebra morphism is a Lie subalgebra of the codomain.
Equations
- lie_subalgebra.map f K = {to_submodule := {carrier := (submodule.map ↑f ↑K).carrier, add_mem' := _, zero_mem' := _, smul_mem' := _}, lie_mem' := _}
The preimage of a Lie subalgebra under a Lie algebra morphism is a Lie subalgebra of the domain.
Equations
- lie_subalgebra.comap f K₂ = {to_submodule := {carrier := (submodule.comap ↑f ↑K₂).carrier, add_mem' := _, zero_mem' := _, smul_mem' := _}, lie_mem' := _}
Equations
- lie_subalgebra.partial_order = {le := λ (N N' : lie_subalgebra R L), ∀ ⦃x : L⦄, x ∈ N → x ∈ N', lt := partial_order.lt (partial_order.lift coe lie_subalgebra.coe_injective), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _}
Equations
- lie_subalgebra.has_bot = {bot := 0}
Equations
- lie_subalgebra.has_Inf = {Inf := λ (S : set (lie_subalgebra R L)), {to_submodule := {carrier := (has_Inf.Inf {_x : submodule R L | ∃ (s : lie_subalgebra R L) (H : s ∈ S), ↑s = _x}).carrier, add_mem' := _, zero_mem' := _, smul_mem' := _}, lie_mem' := _}}
The set of Lie subalgebras of a Lie algebra form a complete lattice.
We provide explicit values for the fields bot
, top
, inf
to get more convenient definitions
than we would otherwise obtain from complete_lattice_of_Inf
.
Equations
- lie_subalgebra.complete_lattice = {sup := complete_lattice.sup (complete_lattice_of_Inf (lie_subalgebra R L) lie_subalgebra.Inf_glb), le := complete_lattice.le (complete_lattice_of_Inf (lie_subalgebra R L) lie_subalgebra.Inf_glb), lt := complete_lattice.lt (complete_lattice_of_Inf (lie_subalgebra R L) lie_subalgebra.Inf_glb), le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := has_inf.inf lie_subalgebra.has_inf, inf_le_left := _, inf_le_right := _, le_inf := _, Sup := complete_lattice.Sup (complete_lattice_of_Inf (lie_subalgebra R L) lie_subalgebra.Inf_glb), le_Sup := _, Sup_le := _, Inf := complete_lattice.Inf (complete_lattice_of_Inf (lie_subalgebra R L) lie_subalgebra.Inf_glb), Inf_le := _, le_Inf := _, top := ⊤, bot := ⊥, le_top := _, bot_le := _}
Equations
- lie_subalgebra.add_comm_monoid = {add := has_sup.sup (semilattice_sup.to_has_sup (lie_subalgebra R L)), add_assoc := _, zero := ⊥, zero_add := _, add_zero := _, nsmul := add_monoid.nsmul._default ⊥ has_sup.sup lie_subalgebra.add_comm_monoid._proof_4 lie_subalgebra.add_comm_monoid._proof_5, nsmul_zero' := _, nsmul_succ' := _, add_comm := _}
Equations
- lie_subalgebra.canonically_ordered_add_monoid = {add := add_comm_monoid.add lie_subalgebra.add_comm_monoid, add_assoc := _, zero := add_comm_monoid.zero lie_subalgebra.add_comm_monoid, zero_add := _, add_zero := _, nsmul := add_comm_monoid.nsmul lie_subalgebra.add_comm_monoid, nsmul_zero' := _, nsmul_succ' := _, add_comm := _, le := complete_lattice.le lie_subalgebra.complete_lattice, lt := complete_lattice.lt lie_subalgebra.complete_lattice, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := _, bot := complete_lattice.bot lie_subalgebra.complete_lattice, bot_le := _, exists_add_of_le := _, le_self_add := _}
Given two nested Lie subalgebras K ⊆ K'
, the inclusion K ↪ K'
is a morphism of Lie
algebras.
Equations
- lie_subalgebra.hom_of_le h = {to_linear_map := {to_fun := (submodule.of_le h).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}
Given two nested Lie subalgebras K ⊆ K'
, we can view K
as a Lie subalgebra of K'
,
regarded as Lie algebra in its own right.
Equations
Given nested Lie subalgebras K ⊆ K'
, there is a natural equivalence from K
to its image in
K'
.
Equations
The Lie subalgebra of a Lie algebra L
generated by a subset s ⊆ L
.
Equations
- lie_subalgebra.lie_span R L s = has_Inf.Inf {N : lie_subalgebra R L | s ⊆ ↑N}
lie_span
forms a Galois insertion with the coercion from lie_subalgebra
to set
.
Equations
- lie_subalgebra.gi R L = {choice := λ (s : set L) (_x : ↑(lie_subalgebra.lie_span R L s) ≤ s), lie_subalgebra.lie_span R L s, gc := _, le_l_u := _, choice_eq := _}
An injective Lie algebra morphism is an equivalence onto its range.
Equations
- lie_equiv.of_injective f h = {to_lie_hom := {to_linear_map := {to_fun := (linear_equiv.of_injective ↑f _).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := (linear_equiv.of_injective ↑f _).inv_fun, left_inv := _, right_inv := _}
Lie subalgebras that are equal as sets are equivalent as Lie algebras.
Equations
- lie_equiv.of_eq L₁' L₁'' h = {to_lie_hom := {to_linear_map := {to_fun := (linear_equiv.of_eq ↑L₁' ↑L₁'' _).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := (linear_equiv.of_eq ↑L₁' ↑L₁'' _).inv_fun, left_inv := _, right_inv := _}
An equivalence of Lie algebras restricts to an equivalence from any Lie subalgebra onto its image.
Equations
- lie_equiv.lie_subalgebra_map L₁'' e = {to_lie_hom := {to_linear_map := {to_fun := (↑e.submodule_map ↑L₁'').to_fun, map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := (↑e.submodule_map ↑L₁'').inv_fun, left_inv := _, right_inv := _}
An equivalence of Lie algebras restricts to an equivalence from any Lie subalgebra onto its image.
Equations
- lie_equiv.of_subalgebras L₁' L₂' e h = {to_lie_hom := {to_linear_map := {to_fun := (↑e.of_submodules ↑L₁' ↑L₂' _).to_fun, map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := (↑e.of_submodules ↑L₁' ↑L₂' _).inv_fun, left_inv := _, right_inv := _}