Lie algebras of matrices #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
An important class of Lie algebras are those arising from the associative algebra structure on square matrices over a commutative ring. This file provides some very basic definitions whose primary value stems from their utility when constructing the classical Lie algebras using matrices.
Main definitions #
lie_equiv_matrix'
matrix.lie_conj
matrix.reindex_lie_equiv
Tags #
lie algebra, matrix
The natural equivalence between linear endomorphisms of finite free modules and square matrices is compatible with the Lie algebra structures.
Equations
- lie_equiv_matrix' = {to_lie_hom := {to_linear_map := {to_fun := linear_map.to_matrix'.to_fun, map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := linear_map.to_matrix'.inv_fun, left_inv := _, right_inv := _}
An invertible matrix induces a Lie algebra equivalence from the space of matrices to itself.
Equations
For square matrices, the natural map that reindexes a matrix's rows and columns with equivalent
types, matrix.reindex
, is an equivalence of Lie algebras.
Equations
- matrix.reindex_lie_equiv e = {to_lie_hom := {to_linear_map := {to_fun := ⇑(matrix.reindex e e), map_add' := _, map_smul' := _}, map_lie' := _}, inv_fun := (matrix.reindex_linear_equiv R R e e).inv_fun, left_inv := _, right_inv := _}