Box additive functions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We say that a function f : box ι → M
from boxes in ℝⁿ
to a commutative additive monoid M
is
box additive on subboxes of I₀ : with_top (box ι)
if for any box J
, ↑J ≤ I₀
, and a partition
π
of J
, f J = ∑ J' in π.boxes, f J'
. We use I₀ : with_top (box ι)
instead of I₀ : box ι
to
use the same definition for functions box additive on subboxes of a box and for functions box
additive on all boxes.
Examples of box-additive functions include the measure of a box and the integral of a fixed integrable function over a box.
In this file we define box-additive functions and prove that a function such that
f J = f (J ∩ {x | x i < y}) + f (J ∩ {x | y ≤ x i})
is box-additive.
Tags #
rectangular box, additive function
- to_fun : box_integral.box ι → M
- sum_partition_boxes' : ∀ (J : box_integral.box ι), ↑J ≤ I → ∀ (π : box_integral.prepartition J), π.is_partition → π.boxes.sum (λ (Ji : box_integral.box ι), self.to_fun Ji) = self.to_fun J
A function on box ι
is called box additive if for every box J
and a partition π
of J
we have f J = ∑ Ji in π.boxes, f Ji
. A function is called box additive on subboxes of I : box ι
if the same property holds for J ≤ I
. We formalize these two notions in the same definition
using I : with_bot (box ι)
: the value I = ⊤
corresponds to functions box additive on the whole
space.
Instances for box_integral.box_additive_map
Equations
- box_integral.box_additive_map.has_zero = {zero := {to_fun := 0, sum_partition_boxes' := _}}
Equations
Equations
- box_integral.box_additive_map.has_add = {add := λ (f g : box_integral.box_additive_map ι M I₀), {to_fun := ⇑f + ⇑g, sum_partition_boxes' := _}}
Equations
- box_integral.box_additive_map.has_smul = {smul := λ (r : R) (f : box_integral.box_additive_map ι M I₀), {to_fun := r • ⇑f, sum_partition_boxes' := _}}
Equations
- box_integral.box_additive_map.add_comm_monoid = function.injective.add_comm_monoid (λ (f : box_integral.box_additive_map ι M I₀) (x : box_integral.box ι), ⇑f x) box_integral.box_additive_map.coe_injective box_integral.box_additive_map.add_comm_monoid._proof_1 box_integral.box_additive_map.add_comm_monoid._proof_2 box_integral.box_additive_map.add_comm_monoid._proof_3
If f
is box-additive on subboxes of I₀
, then it is box-additive on subboxes of any
I ≤ I₀
.
If f : box ι → M
is box additive on partitions of the form split I i x
, then it is box
additive.
Equations
- box_integral.box_additive_map.of_map_split_add f I₀ hf = {to_fun := f, sum_partition_boxes' := _}
If g : M → N
is an additive map and f
is a box additive map, then g ∘ f
is a box additive
map.
If f
is a box additive function on subboxes of I
and π₁
, π₂
are two prepartitions of
I
that cover the same part of I
, then ∑ J in π₁.boxes, f J = ∑ J in π₂.boxes, f J
.
If f
is a box-additive map, then so is the map sending I
to the scalar multiplication
by f I
as a continuous linear map from E
to itself.
Equations
Given a box I₀
in ℝⁿ⁺¹
, f x : box (fin n) → G
is a family of functions indexed by a real
x
and for x ∈ [I₀.lower i, I₀.upper i]
, f x
is box-additive on subboxes of the i
-th face of
I₀
, then λ J, f (J.upper i) (J.face i) - f (J.lower i) (J.face i)
is box-additive on subboxes of
I₀
.
Equations
- box_integral.box_additive_map.upper_sub_lower I₀ i f fb hf = box_integral.box_additive_map.of_map_split_add (λ (J : box_integral.box (fin (n + 1))), f (J.upper i) (J.face i) - f (J.lower i) (J.face i)) ↑I₀ _