Box additive functions #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
We say that a function f : box ι → M from boxes in ℝⁿ to a commutative additive monoid M is
box additive on subboxes of I₀ : with_top (box ι) if for any box J, ↑J ≤ I₀, and a partition
π of J, f J = ∑ J' in π.boxes, f J'. We use I₀ : with_top (box ι) instead of I₀ : box ι to
use the same definition for functions box additive on subboxes of a box and for functions box
additive on all boxes.
Examples of box-additive functions include the measure of a box and the integral of a fixed integrable function over a box.
In this file we define box-additive functions and prove that a function such that
f J = f (J ∩ {x | x i < y}) + f (J ∩ {x | y ≤ x i}) is box-additive.
Tags #
rectangular box, additive function
- to_fun : box_integral.box ι → M
- sum_partition_boxes' : ∀ (J : box_integral.box ι), ↑J ≤ I → ∀ (π : box_integral.prepartition J), π.is_partition → π.boxes.sum (λ (Ji : box_integral.box ι), self.to_fun Ji) = self.to_fun J
A function on box ι is called box additive if for every box J and a partition π of J
we have f J = ∑ Ji in π.boxes, f Ji. A function is called box additive on subboxes of I : box ι
if the same property holds for J ≤ I. We formalize these two notions in the same definition
using I : with_bot (box ι): the value I = ⊤ corresponds to functions box additive on the whole
space.
Instances for box_integral.box_additive_map
Equations
- box_integral.box_additive_map.has_zero = {zero := {to_fun := 0, sum_partition_boxes' := _}}
Equations
Equations
- box_integral.box_additive_map.has_add = {add := λ (f g : box_integral.box_additive_map ι M I₀), {to_fun := ⇑f + ⇑g, sum_partition_boxes' := _}}
Equations
- box_integral.box_additive_map.has_smul = {smul := λ (r : R) (f : box_integral.box_additive_map ι M I₀), {to_fun := r • ⇑f, sum_partition_boxes' := _}}
Equations
- box_integral.box_additive_map.add_comm_monoid = function.injective.add_comm_monoid (λ (f : box_integral.box_additive_map ι M I₀) (x : box_integral.box ι), ⇑f x) box_integral.box_additive_map.coe_injective box_integral.box_additive_map.add_comm_monoid._proof_1 box_integral.box_additive_map.add_comm_monoid._proof_2 box_integral.box_additive_map.add_comm_monoid._proof_3
If f is box-additive on subboxes of I₀, then it is box-additive on subboxes of any
I ≤ I₀.
If f : box ι → M is box additive on partitions of the form split I i x, then it is box
additive.
Equations
- box_integral.box_additive_map.of_map_split_add f I₀ hf = {to_fun := f, sum_partition_boxes' := _}
If g : M → N is an additive map and f is a box additive map, then g ∘ f is a box additive
map.
If f is a box additive function on subboxes of I and π₁, π₂ are two prepartitions of
I that cover the same part of I, then ∑ J in π₁.boxes, f J = ∑ J in π₂.boxes, f J.
If f is a box-additive map, then so is the map sending I to the scalar multiplication
by f I as a continuous linear map from E to itself.
Equations
Given a box I₀ in ℝⁿ⁺¹, f x : box (fin n) → G is a family of functions indexed by a real
x and for x ∈ [I₀.lower i, I₀.upper i], f x is box-additive on subboxes of the i-th face of
I₀, then λ J, f (J.upper i) (J.face i) - f (J.lower i) (J.face i) is box-additive on subboxes of
I₀.
Equations
- box_integral.box_additive_map.upper_sub_lower I₀ i f fb hf = box_integral.box_additive_map.of_map_split_add (λ (J : box_integral.box (fin (n + 1))), f (J.upper i) (J.face i) - f (J.lower i) (J.face i)) ↑I₀ _