The category of finite bounded distributive lattices #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file defines FinBddDistLat
, the category of finite distributive lattices with
bounded lattice homomorphisms.
- to_BddDistLat : BddDistLat
- is_fintype : fintype ↥(self.to_BddDistLat)
The category of finite distributive lattices with bounded lattice morphisms.
Instances for FinBddDistLat
@[protected, instance]
Equations
- FinBddDistLat.has_coe_to_sort = {coe := λ (X : FinBddDistLat), ↥(X.to_BddDistLat)}
@[protected, instance]
Equations
@[protected, instance]
Equations
Construct a bundled FinBddDistLat
from a nonempty
bounded_order
distrib_lattice
.
Equations
- FinBddDistLat.of α = FinBddDistLat.mk (BddDistLat.mk {α := α, str := _inst_1})
Construct a bundled FinBddDistLat
from a nonempty
bounded_order
distrib_lattice
.
Equations
- FinBddDistLat.of' α = FinBddDistLat.mk (BddDistLat.mk {α := α, str := _inst_1})
@[protected, instance]
Equations
@[protected, instance]
@[protected, instance]
Equations
- FinBddDistLat.has_forget_to_FinPartOrd = {forget₂ := {obj := λ (X : FinBddDistLat), FinPartOrd.of ↥X, map := λ (X Y : FinBddDistLat) (f : X ⟶ Y), ↑((λ (this : bounded_lattice_hom ↥X ↥Y), this) f), map_id' := FinBddDistLat.has_forget_to_FinPartOrd._proof_1, map_comp' := FinBddDistLat.has_forget_to_FinPartOrd._proof_2}, forget_comp := FinBddDistLat.has_forget_to_FinPartOrd._proof_3}
@[simp]
theorem
FinBddDistLat.iso.mk_hom
{α β : FinBddDistLat}
(e : ↥α ≃o ↥β) :
(FinBddDistLat.iso.mk e).hom = ↑e
Constructs an equivalence between finite distributive lattices from an order isomorphism between them.
Equations
- FinBddDistLat.iso.mk e = {hom := ↑e, inv := ↑(e.symm), hom_inv_id' := _, inv_hom_id' := _}
@[simp]
theorem
FinBddDistLat.iso.mk_inv
{α β : FinBddDistLat}
(e : ↥α ≃o ↥β) :
(FinBddDistLat.iso.mk e).inv = ↑(e.symm)
@[simp]
theorem
FinBddDistLat.dual_map
(X Y : FinBddDistLat)
(ᾰ : bounded_lattice_hom ↥(X.to_BddDistLat.to_BddLat) ↥(Y.to_BddDistLat.to_BddLat)) :
@[simp]
order_dual
as a functor.
Equations
- FinBddDistLat.dual = {obj := λ (X : FinBddDistLat), FinBddDistLat.of (↥X)ᵒᵈ, map := λ (X Y : FinBddDistLat), ⇑bounded_lattice_hom.dual, map_id' := FinBddDistLat.dual._proof_1, map_comp' := FinBddDistLat.dual._proof_2}
The equivalence between FinBddDistLat
and itself induced by order_dual
both ways.
Equations
- FinBddDistLat.dual_equiv = category_theory.equivalence.mk FinBddDistLat.dual FinBddDistLat.dual (category_theory.nat_iso.of_components (λ (X : FinBddDistLat), FinBddDistLat.iso.mk (order_iso.dual_dual ↥X)) FinBddDistLat.dual_equiv._proof_1) (category_theory.nat_iso.of_components (λ (X : FinBddDistLat), FinBddDistLat.iso.mk (order_iso.dual_dual ↥X)) FinBddDistLat.dual_equiv._proof_2)
@[simp]
@[simp]