Bernoulli polynomials #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
The Bernoulli polynomials are an important tool obtained from Bernoulli numbers.
Mathematical overview #
The $n$-th Bernoulli polynomial is defined as $$ B_n(X) = ∑_{k = 0}^n {n \choose k} (-1)^k B_k X^{n - k} $$ where $B_k$ is the $k$-th Bernoulli number. The Bernoulli polynomials are generating functions, $$ \frac{t e^{tX} }{ e^t - 1} = ∑_{n = 0}^{\infty} B_n(X) \frac{t^n}{n!} $$
Implementation detail #
Bernoulli polynomials are defined using bernoulli
, the Bernoulli numbers.
Main theorems #
sum_bernoulli
: The sum of the $k^\mathrm{th}$ Bernoulli polynomial with binomial coefficients up ton
is(n + 1) * X^n
.polynomial.bernoulli_generating_function
: The Bernoulli polynomials act as generating functions for the exponential.
TODO #
bernoulli_eval_one_neg
: $$ B_n(1 - x) = (-1)^n B_n(x) $$
The Bernoulli polynomials are defined in terms of the negative Bernoulli numbers.
Equations
- polynomial.bernoulli n = (finset.range (n + 1)).sum (λ (i : ℕ), ⇑(polynomial.monomial (n - i)) (bernoulli i * ↑(n.choose i)))
Another version of polynomial.sum_bernoulli
.
Another version of bernoulli.sum_range_pow
.
Rearrangement of polynomial.sum_range_pow_eq_bernoulli_sub
.
The theorem that $(e^X - 1) * ∑ Bₙ(t)* X^n/n! = Xe^{tX}$