Matrices and linear equivalences #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file gives the map matrix.to_linear_equiv from matrices with invertible determinant,
to linear equivs.
Main definitions #
matrix.to_linear_equiv: a matrix with an invertible determinant forms a linear equiv
Main results #
matrix.exists_mul_vec_eq_zero_iff:Mmaps somev ≠ 0to zero iffdet M = 0
Tags #
matrix, linear_equiv, determinant, inverse
An invertible matrix yields a linear equivalence from the free module to itself.
See matrix.to_linear_equiv for the same map on arbitrary modules.
Equations
Given hA : is_unit A.det and b : basis R b, A.to_linear_equiv b hA is
the linear_equiv arising from to_lin b b A.
See matrix.to_linear_equiv' for this result on n → R.
This holds for all integral domains (see matrix.exists_mul_vec_eq_zero_iff),
not just fields, but it's easier to prove it for the field of fractions first.
Alias of the forward direction of matrix.nondegenerate_iff_det_ne_zero.
Alias of the reverse direction of matrix.nondegenerate_iff_det_ne_zero.