Matrices and linear equivalences #
THIS FILE IS SYNCHRONIZED WITH MATHLIB4. Any changes to this file require a corresponding PR to mathlib4.
This file gives the map matrix.to_linear_equiv
from matrices with invertible determinant,
to linear equivs.
Main definitions #
matrix.to_linear_equiv
: a matrix with an invertible determinant forms a linear equiv
Main results #
matrix.exists_mul_vec_eq_zero_iff
:M
maps somev ≠ 0
to zero iffdet M = 0
Tags #
matrix, linear_equiv, determinant, inverse
An invertible matrix yields a linear equivalence from the free module to itself.
See matrix.to_linear_equiv
for the same map on arbitrary modules.
Equations
Given hA : is_unit A.det
and b : basis R b
, A.to_linear_equiv b hA
is
the linear_equiv
arising from to_lin b b A
.
See matrix.to_linear_equiv'
for this result on n → R
.
This holds for all integral domains (see matrix.exists_mul_vec_eq_zero_iff
),
not just fields, but it's easier to prove it for the field of fractions first.
Alias of the forward direction of matrix.nondegenerate_iff_det_ne_zero
.
Alias of the reverse direction of matrix.nondegenerate_iff_det_ne_zero
.